Full-length 16S rRNA gene sequencing reveals spatiotemporal dynamics of bacterial community in a heavily polluted estuary, China

2021 ◽  
Vol 275 ◽  
pp. 116567
Author(s):  
Ming Hongxia ◽  
Fan Jingfeng ◽  
Liu Jiwen ◽  
Su jie ◽  
Wan Zhiyi ◽  
...  
Author(s):  
Bo Zhang ◽  
Matthew Brock ◽  
Carlos Arana ◽  
Chaitanya Dende ◽  
Nicolai Stanislas van Oers ◽  
...  

Bead-beating within a DNA extraction protocol is critical for complete microbial cell lysis and accurate assessment of the abundance and composition of the microbiome. While the impact of bead-beating on the recovery of OTUs at the phylum and class level have been studied, its influence on species-level microbiome recovery is not clear. Recent advances in sequencing technology has allowed species-level resolution of the microbiome using full length 16S rRNA gene sequencing instead of smaller amplicons that only capture a few hypervariable regions of the gene. We sequenced the v3-v4 hypervariable region as well as the full length 16S rRNA gene in mouse and human stool samples and discovered major clusters of gut bacteria that exhibit different levels of sensitivity to bead-beating treatment. Full length 16S rRNA gene sequencing unraveled vast species diversity in the mouse and human gut microbiome and enabled characterization of several unclassified OTUs in amplicon data. Many species of major gut commensals such as Bacteroides, Lactobacillus, Blautia, Clostridium, Escherichia, Roseburia, Helicobacter, and Ruminococcus were identified. Interestingly, v3-v4 amplicon data classified about 50% of Ruminococcus reads as Ruminococcus gnavus species which showed maximum abundance in a 9 min beaten sample. However, the remaining 50% of reads could not be assigned to any species. Full length 16S rRNA gene sequencing data showed that the majority of the unclassified reads were Ruminococcus albus species which unlike R. gnavus showed maximum recovery in the unbeaten sample instead. Furthermore, we found that the Blautia hominis and Streptococcus parasanguinis species were differently sensitive to bead-beating treatment than the rest of the species in these genera. Thus, the present study demonstrates species level variations in sensitivity to bead-beating treatment that could only be resolved with full length 16S rRNA sequencing. This study identifies species of common gut commensals and potential pathogens that require minimum (0-1 min) or extensive (4-9 min) bead-beating for their maximal recovery.


2021 ◽  
Author(s):  
Shinnosuke Komiya ◽  
Yoshiyuki Matsuo ◽  
So Nakagawa ◽  
Yoshiharu Morimoto ◽  
Kirill Kryukov ◽  
...  

AbstractIt has been suggested that the local microbiota in the reproductive organs is relevant to women’s health and may also affect pregnancy outcomes. Analysis of partial 16S ribosomal RNA (rRNA) gene sequences generated by short-read sequencers has been used to identify vaginal and endometrial microbiota, but it requires a long time to obtain the results, making it unsuitable for the rapid analysis of small samples in a clinical context. We demonstrated a simple workflow using the nanopore sequencer MinION™ that allows high-resolution and rapid differentiation of vaginal microbiota. Vaginal samples collected from 18 participants were subjected to DNA extraction and full-length 16S rRNA gene sequencing with MinION™. The principal coordinate analysis showed no differences in the bacterial compositions regardless of the sample collection method. The vaginal microbiota results could be reported within 2 days of specimen receipt. Although bacterial vaginosis (BV) was not diagnosed by the Nugent score in any cases, groups with both healthy and BV-like vaginal microbiota were clearly characterized by MinION™ sequencing. We conclude that full-length 16S rRNA gene sequencing analysis with MinION™ provides a rapid means for identifying vaginal bacteria with higher resolution. Species-level profiling of human vaginal microbiota by MinION™ sequencing can allow the analysis of associations with conditions such as genital infections, endometritis, and threatened miscarriage.


2019 ◽  
Vol 13 (1) ◽  
pp. 90-101
Author(s):  
Sanju Kumari ◽  
Utkarshini Sharma ◽  
Rohit Krishna ◽  
Kanak Sinha ◽  
Santosh Kumar

Background: Cellulolysis is of considerable economic importance in laundry detergents, textile and pulp and paper industries and in fermentation of biomass into biofuels. Objective: The aim was to screen cellulase producing actinobacteria from the fruit orchard because of its requirement in several chemical reactions. Methods: Strains of actinobacteria were isolated on Sabouraud’s agar medium. Similarities in cultural and biochemical characterization by growing the strains on ISP medium and dissimilarities among them perpetuated to recognise nine groups of actinobacteria. Cellulase activity was measured by the diameter of clear zone around colonies on CMC agar and the amount of reducing sugar liberated from carboxymethyl cellulose in the supernatant of the CMC broth. Further, 16S rRNA gene sequencing and molecular characterization were placed before NCBI for obtaining recognition with accession numbers. Results: Prominent clear zones on spraying Congo Red were found around the cultures of strains of three groups SK703, SK706, SK708 on CMC agar plates. The enzyme assay for carboxymethylcellulase displayed extra cellulase activity in broth: 0.14, 0.82 and 0.66 µmol mL-1 min-1, respectively at optimum conditions of 35°C, pH 7.3 and 96 h of incubation. However, the specific cellulase activities per 1 mg of protein did not differ that way. It was 1.55, 1.71 and 1.83 μmol mL-1 min-1. The growing mycelia possessed short compact chains of 10-20 conidia on aerial branches. These morphological and biochemical characteristics, followed by their verification by Bergey’s Manual, categorically allowed the strains to be placed under actinobacteria. Further, 16S rRNA gene sequencing, molecular characterization and their evolutionary relationship through phylogenetics also confirmed the putative cellulase producing isolates of SK706 and SK708 subgroups to be the strains of Streptomyces. These strains on getting NCBI recognition were christened as Streptomyces glaucescens strain SK91L (KF527284) and Streptomyces rochei strain SK78L (KF515951), respectively. Conclusion: Conclusive evidence on the basis of different parameters established the presence of cellulase producing actinobacteria in the litchi orchard which can convert cellulose into fermentable sugar.


Sign in / Sign up

Export Citation Format

Share Document