Investigation of microplastics release behavior from ozone-exposed plastic pipe materials

2021 ◽  
pp. 118758
Author(s):  
Xinyue Zhang ◽  
Tao Lin ◽  
Xiaoxiang Wang
2003 ◽  
Vol 48 (1) ◽  
pp. 7 ◽  
Author(s):  
Dong Hyun Kim ◽  
Sung Gwon Kang ◽  
Sang Soo Park ◽  
Don Haeng Lee ◽  
Gyu Baek Lee ◽  
...  

2000 ◽  
Vol 41 (4-5) ◽  
pp. 295-300 ◽  
Author(s):  
F. Murdoch ◽  
P.G. Smith

The deposition of manganese within a biofilm growing on the surface of high-density polyethlene (HDPE) and polyvinychloride (PVC) was studied over a period of four months. The manganese rich water used in the study was inoculated with a manganese oxidising Pseudomonas spp. The level of Mn2+ in the water was monitored and was found to decrease as the biofilm formation increased. This was confirmed by energy dispersive X-ray spectroscopy (EDS) analysis which showed the detection of manganese was dependent on the presence of a biofilm. After two months a 100% removal of Mn2+ was observed in all the flasks inoculated by the Pseudomonas spp. and manganese micro-nodules, the formation of which were reported in Murdoch and Smith (1999), were being formed in large clusters across the surfaces of both the HDPE and PVC. The manganese peak area from the EDS spectrum analysis of the micro-nodules was significantly larger than was measured in the biofilm when these micro-nodules were absent. The scanning confocal laser microscope (SCLM) images of three-week samples showed high bacterial activity around areas where manganese micro-nodules were starting to form on the pipe surface.


Author(s):  
Shengxian Xian ◽  
Haixia Zhang ◽  
Zhen Chai ◽  
Denghao Jiang ◽  
Zhiping Zhu

Author(s):  
Jiangfeng Li ◽  
Junying Li ◽  
Yuhao Wei ◽  
Na Xu ◽  
Jingtao Li ◽  
...  

Vanadium is an important trace element in bone to involve in bone metabolism, bone formation, and bone growth, but roles of various vanadium ions, especially pentavalent vanadium, in bone tissue...


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2591
Author(s):  
Thuan Thi Duong ◽  
Antti Isomäki ◽  
Urve Paaver ◽  
Ivo Laidmäe ◽  
Arvo Tõnisoo ◽  
...  

Berberine (BBR) is a poorly water-soluble quaternary isoquinoline alkaloid of plant origin with potential uses in the drug therapy of hypercholesterolemia. To tackle the limitations associated with the oral therapeutic use of BBR (such as a first-pass metabolism and poor absorption), BBR-loaded liposomes were fabricated by ethanol-injection and thin-film hydration methods. The size and size distribution, polydispersity index (PDI), solid-state properties, entrapment efficiency (EE) and in vitro drug release of liposomes were investigated. The BBR-loaded liposomes prepared by ethanol-injection and thin-film hydration methods presented an average liposome size ranging from 50 nm to 244 nm and from 111 nm to 449 nm, respectively. The PDI values for the liposomes were less than 0.3, suggesting a narrow size distribution. The EE of liposomes ranged from 56% to 92%. Poorly water-soluble BBR was found to accumulate in the bi-layered phospholipid membrane of the liposomes prepared by the thin-film hydration method. The BBR-loaded liposomes generated by both nanofabrication methods presented extended drug release behavior in vitro. In conclusion, both ethanol-injection and thin-film hydration nanofabrication methods are feasible for generating BBR-loaded oral liposomes with a uniform size, high EE and modified drug release behavior in vitro.


Sign in / Sign up

Export Citation Format

Share Document