The interaction of a manganese-oxidising bacterium as part of a biofilm growing on distribution pipe materials

2000 ◽  
Vol 41 (4-5) ◽  
pp. 295-300 ◽  
Author(s):  
F. Murdoch ◽  
P.G. Smith

The deposition of manganese within a biofilm growing on the surface of high-density polyethlene (HDPE) and polyvinychloride (PVC) was studied over a period of four months. The manganese rich water used in the study was inoculated with a manganese oxidising Pseudomonas spp. The level of Mn2+ in the water was monitored and was found to decrease as the biofilm formation increased. This was confirmed by energy dispersive X-ray spectroscopy (EDS) analysis which showed the detection of manganese was dependent on the presence of a biofilm. After two months a 100% removal of Mn2+ was observed in all the flasks inoculated by the Pseudomonas spp. and manganese micro-nodules, the formation of which were reported in Murdoch and Smith (1999), were being formed in large clusters across the surfaces of both the HDPE and PVC. The manganese peak area from the EDS spectrum analysis of the micro-nodules was significantly larger than was measured in the biofilm when these micro-nodules were absent. The scanning confocal laser microscope (SCLM) images of three-week samples showed high bacterial activity around areas where manganese micro-nodules were starting to form on the pipe surface.

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 827 ◽  
Author(s):  
Steluta Carmen Ciobanu ◽  
Simona Liliana Iconaru ◽  
Daniela Predoi ◽  
Alina Mihaela Prodan ◽  
Mihai Valentin Predoi

Hydroxyapatite (HAp) and samarium doped hydroxyapatite, Ca10−xSmx(PO4)6(OH)2, xSm = 0.05, (5SmHAp), coatings were prepared by sol-gel process using the dip coating method. The stability of 5SmHAp suspension was evaluated by ultrasound measurements. Fourier transform infrared spectroscopy (FTIR) was used to examine the optical characteristics of HAp and 5SmHAp nanoparticles in suspension and coatings. The FTIR analysis revealed the presence of the functional groups specific to the structure of hydroxyapatite in the 5SmHAp suspensions and coatings. The morphology of 5SmHAp nanoparticles in suspension was evaluated by transmission electron microscopy (TEM). Moreover, scanning electron microscope (SEM) was used to evaluate the morphology of nanoparticle in suspension and the morphology of the surface on the coating. The SEM and TEM studies on 5SmHAp nanoparticles in suspension showed that our samples consist of nanometric particles with elongated morphology. The SEM micrographs of HAp and 5SmHAp coatings pointed out that the coatings are continuous and homogeneous. The surface morphology of the 5SmHAp coatings was also assessed by Atomic Force Microscopy (AFM) studies. The AFM results emphasized that the coatings presented the morphology of a uniformly deposited layer with no cracks and fissures. The crystal structure of 5SmHAp coating was characterized by X-ray diffraction (XRD). The surface composition of 5SmHAp coating was analyzed by X-ray photoelectron spectroscopy (XPS). The XRD and XPS analysis shown that the Sm3+ ions have been incorporated into the 5SmHAp synthesized material. The antifungal properties of the 5SmHAp suspensions and coatings were studied using Candida albicans ATCC 10231 (C. albicans) fungal strains. The quantitative results of the antifungal assay showed that colony forming unity development was inhibited from the early phase of adherence in the case of both suspensions and coatings. Furthermore, the adhesion, cell proliferation and biofilm formation of the C. albicans were also investigated by AFM, SEM and Confocal Laser Scanning Microscopy (CLSM) techniques. The results highlighted that the C. albicans adhesion and cell development was inhibited by the 5SmHAp coatings. Moreover, the data also revealed that the 5SmHAp coatings were effective in stopping the biofilm formation on their surface. The toxicity of the 5SmHap was also investigated in vitro using HeLa cell line.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Simona Liliana Iconaru ◽  
Mihai Valentin Predoi ◽  
Patrick Chapon ◽  
Sofia Gaiaschi ◽  
Krzysztof Rokosz ◽  
...  

In this study, the cerium-doped hydroxyapatite (Ca10−xCex(PO4)6(OH)2 with xCe = 0.1, 10Ce-HAp) coatings obtained by the spin coating method were presented for the first time. The stability of the 10Ce-HAp suspension particles used in the preparation of coatings was evaluated by ultrasonic studies, transmission electron microscopy (TEM), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The surface morphology of the 10Ce-HAp coating was studied by SEM and atomic force microscopy (AFM) techniques. The obtained 10Ce-HAp coatings were uniform and without cracks or unevenness. Glow discharge optical emission spectroscopy (GDOES) and X-ray photoelectron spectroscopy (XPS) were used for the investigation of fine chemical depth profiling. The antifungal properties of the HAp and 10Ce-HAp suspensions and coatings were assessed using Candida albicans ATCC 10231 (C. albicans) fungal strain. The quantitative antifungal assays demonstrated that both 10Ce-HAp suspensions and coatings exhibited strong antifungal properties and that they successfully inhibited the development and adherence of C. albicans fungal cells for all the tested time intervals. The scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) visualization of the C. albicans fungal cells adherence to the 10Ce-HAp surface also demonstrated their strong inhibitory effects. In addition, the qualitative assays also suggested that the 10Ce-HAp coatings successfully stopped the biofilm formation.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4072
Author(s):  
Benedikt Kirchebner ◽  
Maximilian Ploetz ◽  
Christoph Rehekampff ◽  
Philipp Lechner ◽  
Wolfram Volk

Like most additive manufacturing processes for metals, material jetting processes require support structures in order to attain full 3D capability. The support structures have to be removed in subsequent operations, which increases costs and slows down the manufacturing process. One approach to this issue is the use of water-soluble support structures made from salts that allow a fast and economic support removal. In this paper, we analyze the influence of salt support structures on material jetted aluminum parts. The salt is applied in its molten state, and because molten salts are typically corrosive substances, it is important to investigate the interaction between support and build material. Other characteristic properties of salts are high melting temperatures and low thermal conductivity, which could potentially lead to remelting of already printed structures and might influence the microstructure of aluminum that is printed on top of the salt due to low cooling rates. Three different sample geometries have been examined using optical microscopy, confocal laser scanning microscopy, energy-dispersive X-ray spectroscopy and micro-hardness testing. The results indicate that there is no distinct influence on the process with respect to remelting, micro-hardness and chemical reactions. However, a larger dendrite arm spacing is observed in aluminum that is printed on salt.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2010 ◽  
Vol 59 (10) ◽  
pp. 1225-1234 ◽  
Author(s):  
H. M. H. N. Bandara ◽  
O. L. T. Lam ◽  
R. M. Watt ◽  
L. J. Jin ◽  
L. P. Samaranayake

The objective of this study was to evaluate the effect of the bacterial endotoxin LPS on Candida biofilm formation in vitro. The effect of the LPS of Pseudomonas aeruginosa, Klebsiella pneumoniae, Serratia marcescens and Salmonella typhimurium on six different species of Candida, comprising Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, Candida tropicalis ATCC 13803, Candida parapsilosis ATCC 22019 and Candida dubliniensis MYA 646, was studied using a standard biofilm assay. The metabolic activity of in vitro Candida biofilms treated with LPS at 90 min, 24 h and 48 h was quantified by XTT reduction assay. Viable biofilm-forming cells were qualitatively analysed using confocal laser scanning microscopy (CLSM), while scanning electron microscopy (SEM) was employed to visualize the biofilm structure. Initially, adhesion of C. albicans was significantly stimulated by Pseudomonas and Klebsiella LPS. A significant inhibition of Candida adhesion was noted for the following combinations: C. glabrata with Pseudomonas LPS, C. tropicalis with Serratia LPS, and C. glabrata, C. parapsilosis or C. dubliniensis with Salmonella LPS (P<0.05). After 24 h of incubation, a significant stimulation of initial colonization was noted for the following combinations: C. albicans/C. glabrata with Klebsiella LPS, C. glabrata/C. tropicalis/C. krusei with Salmonella LPS. In contrast, a significant inhibition of biofilm formation was observed in C. glabrata/C. dubliniensis/C. krusei with Pseudomonas LPS, C. krusei with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. parapsilosis/C. dubliniensis /C. krusei with Salmonella LPS (P<0.05). On further incubation for 48 h, a significant enhancement of biofilm maturation was noted for the following combinations: C. glabrata/C. tropicalis with Serratia LPS, C. dubliniensis with Klebsiella LPS and C. glabrata with Salmonella LPS, and a significant retardation was noted for C. parapsilosis/C. dubliniensis/C. krusei with Pseudomonas LPS, C. tropicalis with Serratia LPS, C. glabrata/C. parapsilosis/C. dubliniensis with Klebsiella LPS and C. dubliniensis with Salmonella LPS (P<0.05). These findings were confirmed by SEM and CLSM analyses. In general, the inhibition of the biofilm development of LPS-treated Candida spp. was accompanied by a scanty architecture with a reduced numbers of cells compared with the profuse and densely colonized control biofilms. These data are indicative that bacterial LPSs modulate in vitro Candida biofilm formation in a species-specific and time-dependent manner. The clinical and the biological relevance of these findings have yet to be explored.


2012 ◽  
Vol 9 (3) ◽  
pp. 1373-1388 ◽  
Author(s):  
A. Hamadi ◽  
K. Nabih

Timahdit oil shale was subjected to firing transformation via ceramics processing followed by alkali activation to synthesis a materials combining the mechanical properties of ceramics and Zeolites. The mineralogical transformations during firing oil shale have been studied. The main crystalline phases found in oil shale ash (OSA) were wollastonite, gehlenite and augite. Modified oil shale ash (MOSA) was obtained with HNO3acid-leaching in the aim to diminish Ca content. Our experimental approach required a NaOH alkaline activating solution with different concentrations (0.5; 1; 2; 4; 6 and 8M). In our study, X-ray diffraction (XDR), Fourier transform infrared (FTIR) and SEM/EDS analysis were used to evaluate the effect of alkali activation on the structural arrangement of the starting materials (OSA and MOSA) in our study. The quantity and the type of the produced zeolites depended critically on the starting materials and on the NaOH concentration.


Sign in / Sign up

Export Citation Format

Share Document