Single and joint ecotoxicity data estimation of organic UV filters and nanomaterials toward selected aquatic organisms. Urban groundwater risk assessment

2016 ◽  
Vol 145 ◽  
pp. 126-134 ◽  
Author(s):  
Daniel Molins-Delgado ◽  
Pablo Gago-Ferrero ◽  
M. Silvia Díaz-Cruz ◽  
Damià Barceló
2021 ◽  
Author(s):  
Florentina Laura Chiriac ◽  
Catalina Stoica ◽  
Iuiana Paun ◽  
Florinela Pirvu ◽  
Toma Galaon ◽  
...  

Abstract Organic UV-filters, including 4-hydroxybenzophenone (4-HBP) and 2,4-dihydroxybenzophenone (BP-1), are persistent emerging contaminants whose presence in the environment poses a threat to aquatic organisms due to their endocrine disruptor’s properties. For this reason, finding suitable technological processes for their safety and efficient removal from the environment represent a priority for the scientific community. To the author’s knowledge, until now, there are no studies reporting the biodegradation of 4-HBP and BP-1 by a single bacteria strain. In this paper, there were tested the 4-HBP and BP-1 biodegradation potential of two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Salmonella typhimurium and Serratia rubidae). The 4-HPB biodegradation process was observed only in the presence of Gram-negative bacterial strains. Thus, the biodegradation rates of 4-HBP reached up to 12.7% after 24h of incubation in presence of Salmonella thyphimurium and up to 24.0% after 24h of incubation with Serratia rubidae. Staphylococcus aureus was able to biodegrade 26.7% of BP-1, while Salmonella thiphymurium was able to biodegrade 14.7% of BP-1 after 24h of incubation. Their biodegradation products generated during the 4-HBP biodegradation process by Serratia rubidae were analyzed through LC-MS/MS analysis. The (bio)degradation products were benzophenone and a multi-hydroxylated derivative of 4-HBP and the degradation pathways were proposed. The data obtained in this study gave important information regarding the 4-HBP and BP-1 potential biodegradation by single bacterial strains.


Ecotoxicology ◽  
2018 ◽  
pp. 111-126
Author(s):  
M. Silvia Diaz-Cruz ◽  
Daniel Molins-Delgado

2021 ◽  
Author(s):  
Florentina Laura Chiriac ◽  
Iuliana Paun ◽  
Florinela Pirvu ◽  
Vasile Ion Iancu ◽  
Toma Galaon

This paper aimed to assess the occurrence, fate, transport and ecological risk of ten organic UV filters in the aquatic environment of Romania. In surface waters, the most abundant compounds...


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Ingo B. Miller ◽  
Sascha Pawlowski ◽  
Matthias Y. Kellermann ◽  
Mechtild Petersen-Thiery ◽  
Mareen Moeller ◽  
...  

Abstract Background Tropical coral reefs have been recognized for their significant ecological and economical value. However, increasing anthropogenic disturbances have led to progressively declining coral reef ecosystems on a global scale. More recently, several studies implicated UV filters used in sunscreen products to negatively affect corals and possibly contribute to regional trends in coral decline. Following a public debate, bans were implemented on several organic UV filters and sunscreen products in different locations including Hawaii, the U.S. Virgin Islands and Palau. This included banning the widely used oxybenzone and octinoxate, while promoting the use of inorganic filters such as zinc oxide even although their toxicity towards aquatic organisms had been documented previously. The bans of organic UV filters were based on preliminary scientific studies that showed several weaknesses as there is to this point no standardized testing scheme for scleractinian corals. Despite the lack of sound scientific proof, the latter controversial bans have already resulted in the emergence of a new sunscreen market for products claimed to be ‘reef safe’ (or similar). Thus, a market analysis of ‘reef safe’ sunscreen products was conducted to assess relevant environmental safety aspects of approved UV filters, especially for coral reefs. Further, a scientifically sound decision-making process in a regulatory context is proposed. Results Our market analysis revealed that about 80% of surveyed sunscreens contained inorganic UV filters and that there is a variety of unregulated claims being used in the marketing of ‘reef safe’ products with ‘reef friendly’ being the most frequently used term. Predominantly, four organic UV filters are used in ‘reef safe’ sunscreens in the absence of the banned filters oxybenzone and octinoxate. Analysis of safe threshold concentrations for marine water retrieved from existing REACH registration dossiers could currently also safeguard corals. Conclusion There is a substantial discrepancy of treatments of organic versus inorganic UV filters in politics as well as in the ‘reef safe’ sunscreen market, which to this point is not scientifically justified. Thus, a risk-based approach with equal consideration of organic and inorganic UV filters is recommended for future regulatory measures as well as a clear definition and regulation of the ‘reef safe’ terminology.


2012 ◽  
Vol 9 (2) ◽  
pp. 139 ◽  
Author(s):  
Dominic Kaiser ◽  
Olaf Wappelhorst ◽  
Matthias Oetken ◽  
Jörg Oehlmann

Environmental contextPersonal care products containing organic chemicals to filter the sun’s UV rays are produced and used on a broad scale worldwide. Consequently, these organic UV filters are now widespread in the environment. We investigate the occurrence of seven common organic UV filters in river and lake sediments thereby providing valuable data for the future environmental risk assessment of these chemicals to the benthic community of freshwater ecosystems. AbstractPersonal care products (PCPs) are produced and used in huge amounts. These formulations are permanently introduced into the aquatic environment during regular use, mainly through municipal sewage treatment plants. Although there is increasing concern about PCP residues in the aquatic environment, little is known about the extent and level of contamination. The occurrence and concentrations of the seven most frequently used ultraviolet (UV) filters in river and lake sediments have been investigated over a 6-month period by gas chromatography–mass spectrometry: benzophenone-3 (BP-3), 3-benzyliden camphor (3-BC), butyl-methoxydibenzoylmethane (B-MDM), ethylhexyl dimethyl p-aminobenzoic acid (ED-PABA), ethylhexyl-methoxycinnamate (EHMC), 3′-(4′-methylbenzyliden)camphor (4-MBC) and octocrylene (OCR). B-MDM, EHMC and OCR were identified as major contaminants. They were present in every sediment sample with maximum concentrations of 62.2, 6.8 and 642 µg kg–1. 3-BC and ED-PABA could not be detected in any sediment sample. The temporal distribution profile and concentrations of UV filters differed between lakes and rivers. Whereas concentrations of all UV filters in river sediments were low and constant over time, lake sediments exhibited high UV-filter levels during summer and concentrations dropped in autumn. These findings support risk assessment activities and contribute to a better understanding of the magnitude of contamination with organic UV-filter substances in aquatic ecosystems.


Sign in / Sign up

Export Citation Format

Share Document