Characterisation of personal exposure to environmental radiofrequency electromagnetic fields in Albacete (Spain) and assessment of risk perception

2019 ◽  
Vol 172 ◽  
pp. 109-116 ◽  
Author(s):  
Raquel Ramirez-Vazquez ◽  
Jesus Gonzalez-Rubio ◽  
Enrique Arribas ◽  
Alberto Najera
Author(s):  
Raquel Ramirez-Vazquez ◽  
Jesus Gonzalez-Rubio ◽  
Isabel Escobar ◽  
Carmen del Pilar Suarez Rodriguez ◽  
Enrique Arribas

In recent years, personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF) has substantially increased, and most studies about RF-EMF with volunteers have been developed in Europe. To the best of our knowledge, this is the first study carried out in Mexico with personal exposimeters. The main objective was to measure personal exposure to RF-EMF from Wireless Fidelity or wireless Internet connection (Wi-Fi) frequency bands in Tamazunchale, San Luis Potosi, Mexico, to compare results with maximum levels permitted by international recommendations and to find if there are differences in the microenvironments subject to measurements. The study was conducted with 63 volunteers in different microenvironments: home, workplace, outside, schools, travel, and shopping. The mean minimum values registered were 146.5 μW/m2 in travel from the Wi-Fi 2G band and 116.8 μW/m2 at home from the Wi-Fi 5G band, and the maximum values registered were 499.7 μW/m2 and 264.9 μW/m2 at the workplace for the Wi-Fi 2G band and the Wi-Fi 5G band, respectively. In addition, by time period and type of day, minimum values were registered at nighttime, these values being 129.4 μW/m2 and 93.9 μW/m2, and maximum values were registered in the daytime, these values being 303.1 μW/m2 and 168.3 μW/m2 for the Wi-Fi 2G and Wi-Fi 5G bands, respectively. In no case, values exceeded limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Of the study participants (n = 63), a subgroup (n = 35) answered a survey on risk perception. According to these results, the Tamazunchale (Mexico) population is worried about this situation in comparison with several European cities; however, the risk perception changes when they are informed about the results for the study.


Author(s):  
Berihun M. Zeleke ◽  
Christopher Brzozek ◽  
Chhavi R. Bhatt ◽  
Michael J. Abramson ◽  
Frederik Freudenstein ◽  
...  

AbstractThe impact of providing people with an objectively measured personal radiofrequency electromagnetic fields (RF-EMF) exposure information on the risk perception of people is not well understood. We conducted an experimental study, among three groups of participants, to investigate the risk perception of people towards RF-EMF from Wi-Fi sources (ISM 2.4 GHz) by providing participants with either basic text, precautionary information, or a summary of their personal RF-EMF exposure measurement levels. Participants provided with personal RF-EMF exposure measurement information were more confident in protecting themselves from RF-EMF exposure, compared to those provided with only basic information. Nonetheless, neither the exposure perception nor the risk perception of people to Wi-Fi related RF-EMF differed by the type of information provided. The measured Wi-Fi signal levels were far below international exposure limits. Furthermore, self-rated levels of personal RF-EMF exposure perception were not associated with objectively measured RF-EMF exposure levels. Providing people with objectively measured information may help them build confidence in protecting themselves from Wi-Fi related RF-EMF exposure.


2016 ◽  
Vol 2016 (1) ◽  
Author(s):  
Mara Gallastegi* ◽  
Ana Jiménez-Zabala ◽  
Loreto Santa-Marina ◽  
Mikel Ayerdi ◽  
Juan José Aurrekoetxea ◽  
...  

2016 ◽  
Vol 151 ◽  
pp. 547-563 ◽  
Author(s):  
Chhavi Raj Bhatt ◽  
Arno Thielens ◽  
Baki Billah ◽  
Mary Redmayne ◽  
Michael J. Abramson ◽  
...  

Author(s):  
Raquel Ramirez-Vazquez ◽  
Sameer Arabasi ◽  
Hussein Al-Taani ◽  
Suhad Sbeih ◽  
Jesus Gonzalez-Rubio ◽  
...  

In the last two decades, due to the development of the information society, the massive increase in the use of information technologies, including the connection and communication of multiple electronic devices, highlighting Wi-Fi networks, as well as the emerging technological advances of 4G and 5G (new-generation mobile phones that will use 5G), have caused a significant increase in the personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF), and as a consequence, increasing discussions about the possible adverse health effects. The main objective of this study was to measure the personal exposure to radiofrequency electromagnetic fields from the Wi-Fi in the university area of German Jordanian University (GJU) and prepare georeferenced maps of the registered intensity levels and to compare them with the basic international restrictions. Spot measurements were made outside the university area at German Jordanian University. Measurements were made in the whole university area and around two buildings. Two Satimo EME SPY 140 (Brest, France) personal exposimeters were used, and the measurements were performed in the morning and afternoon, and on weekends and weekdays. The total average personal exposure to RF-EMF from the Wi-Fi band registered in the three study areas and in the four days measured was 28.82 μW/m2. The average total exposure from the Wi-Fi band registered in the ten measured points of the university area of GJU was 22.97 μW/m2, the one registered in the eight measured points of building H was 34.48 μW/m2, and the one registered in the eight points of building C was 29.00 μW/m2. The maximum average values registered in the campus of GJU are below the guidelines allowed by International Commission on Non-ionizing Radiation Protection (ICNIRP). The measurement protocol used in this work has been applied in measurements already carried out in Spain and Mexico, and it is applicable in university areas of other countries.


Sign in / Sign up

Export Citation Format

Share Document