Zr(IV)-based metal-organic framework nanocomposites with enhanced peroxidase-like activity as a colorimetric sensing platform for sensitive detection of hydrogen peroxide and phenol

2021 ◽  
pp. 111818
Author(s):  
Junning Wang ◽  
Yujie Zhou ◽  
Minqian Zeng ◽  
Yanhong Zhao ◽  
Xiaoxin Zuo ◽  
...  
2017 ◽  
Vol 9 (13) ◽  
pp. 2082-2088 ◽  
Author(s):  
Dan Cheng ◽  
Xi Li ◽  
Yan Qiu ◽  
Qi Chen ◽  
Jian Zhou ◽  
...  

A modified matrix of an iron terephthalate metal–organic framework (MIL-53(Fe)), as a simple and efficient electroactive material for use as an electrochemical biosensor, was investigated.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiezeng Chen ◽  
Hongying Shu ◽  
Pingping Niu ◽  
Pinghua Chen ◽  
Hualin Jiang

Due to the abuse application of antibiotics in the recent decades, a high level of antibiotics has been let out and remains in our environment. Electrochemical sensing is a useful method to sensitively detect antibiotics, and the key factor for a successful electrochemical sensor is the active electrode materials. In this study, a sensitive electrochemical sensing platform based on a metal-organic framework (MOF) of MIL-53 (Fe) was facilely fabricated. It shows highly selective and sensitive detection performance for trace tetracycline. Differential pulse voltammetry (DPV) was applied to analyze the detection of tetracycline. The linear range of tetracycline detection was 0.0643 μmol/L-1.53 μmol/L, and the limit of detection (LOD) is 0.0260 μmol/L. Furthermore, the MOF-enabled sensor can be effectively used in actual water bodies. The results indicate that the electrochemical sensor is a high potential sensing platform for tetracycline.


Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 204
Author(s):  
Yanyan Cheng ◽  
Ling Liang ◽  
Fanggui Ye ◽  
Shulin Zhao

Metal–organic framework (MOF) nanozymes, as emerging members of the nanozymes, have received more and more attention due to their composition and structural characteristics. In this work, we report that mixed-valence state Ce-MOF (MVCM) has intrinsic haloperoxidase-mimicking activity. MVCM was synthesized by partial oxidation method using Ce-MOF as a precursor. In the presence of H2O2 and Br−, MVCM can catalyze oxidative bromination of chromogenic substrate phenol red (PR) to produce the blue product bromophenol blue (Br4PR), showing good haloperoxidase-like activity. Because of the special chromogenic substrate, we constructed a ratiometric colorimetric-sensing platform by detecting the absorbance of the MVCM-(PR, Br−) system at wavelengths of 590 and 430, for quantifying H2O2, where the detection limit of the H2O2 is 3.25 μM. In addition, the haloperoxidase-mimicking mechanism of the MVCM is proposed. Moreover, through enzyme kinetics monitoring, the Km (H2O2 and NH4Br) of the MVCM is lower than that of cerium oxide nanomaterials, indicating that the MVCM has a stronger binding affinity for H2O2 and NH4Br than other materials. This work provides more application prospects for the development of nanozymes in the field of biosensors in the future.


Sign in / Sign up

Export Citation Format

Share Document