scholarly journals Highly Sensitive Detection of Trace Tetracycline in Water Using a Metal-Organic Framework-Enabled Sensor

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiezeng Chen ◽  
Hongying Shu ◽  
Pingping Niu ◽  
Pinghua Chen ◽  
Hualin Jiang

Due to the abuse application of antibiotics in the recent decades, a high level of antibiotics has been let out and remains in our environment. Electrochemical sensing is a useful method to sensitively detect antibiotics, and the key factor for a successful electrochemical sensor is the active electrode materials. In this study, a sensitive electrochemical sensing platform based on a metal-organic framework (MOF) of MIL-53 (Fe) was facilely fabricated. It shows highly selective and sensitive detection performance for trace tetracycline. Differential pulse voltammetry (DPV) was applied to analyze the detection of tetracycline. The linear range of tetracycline detection was 0.0643 μmol/L-1.53 μmol/L, and the limit of detection (LOD) is 0.0260 μmol/L. Furthermore, the MOF-enabled sensor can be effectively used in actual water bodies. The results indicate that the electrochemical sensor is a high potential sensing platform for tetracycline.

2019 ◽  
Vol 9 (22) ◽  
pp. 4952 ◽  
Author(s):  
Sushma Rani ◽  
Bharti Sharma ◽  
Shivani Kapoor ◽  
Rajesh Malhotra ◽  
Rajender S. Varma ◽  
...  

In the present study, we report a highly effective electrochemical sensor for detecting 2,4-dinitrotoluene (2,4-DNT). The amperometric determination of 2,4-DNT was carried out using a gold electrode modified with zinc–metal organic framework-8 and silver quantum dot (Zn-MOF-8@AgQDs) composite. The synthesized nanomaterials were characterized by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD). The synthesized nanocomposite proved to be efficient in electro-catalysis thereby reducing the 2,4-DNT. The unique combination present in Zn-MOF-8@AgQDs composite offered an excellent conductivity and large surface area enabling the fabrication of a highly sensitive (−0.238 µA µM−1 cm−2), selective, rapid and stable 2,4-DNT sensor. The dynamic linear range and limit of detection (LOD) was about 0.0002 µM to 0.9 µM and 0.041 µM, respectively. A 2,4-DNT reduction was also observed during the linear sweep voltammetry (LSV) experiments with reduction peaks at −0.49 V and −0.68 V. This is an unprecedented report with metal organic framework (MOF) composite for sensing 2,4-DNT. In addition, the presence of other species such as thiourea, urea, ammonia, glucose, and ascorbic acid displayed no interference in the modified electrode suggesting its practicability in various environmental applications.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42212-42220
Author(s):  
Manh B. Nguyen ◽  
Vu Thi Hong Nhung ◽  
Vu Thi Thu ◽  
Dau Thi Ngoc Nga ◽  
Thuan Nguyen Pham Truong ◽  
...  

In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate–graphene oxide (Cu–BTC/GO) composite.


RSC Advances ◽  
2020 ◽  
Vol 10 (60) ◽  
pp. 36828-36835
Author(s):  
Jinyun Peng ◽  
Liying Wei ◽  
Yuxia Liu ◽  
Wenfeng Zhuge ◽  
Qing Huang ◽  
...  

A novel electrochemical sensor based on an iron phthalocyanine (FePc) MOF for the sensitive detection of vanillin.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 181
Author(s):  
Lingjun Sha ◽  
Mingcong Zhu ◽  
Fuqing Lin ◽  
Xiaomeng Yu ◽  
Langjian Dong ◽  
...  

Carcinoembryonic antigen (CEA) is an important broad-spectrum tumor marker. For CEA detection, a novel type of metal–organic framework (MOF) was prepared by grafting CEA aptamer-incorporated DNA tetrahedral (TDN) nanostructures into PCN-222 (Fe)-based MOF (referred as CEAapt-TDN-MOF colloid nanorods). The synthesized CEAapt-TDN-MOF is a very stable detection system due to the vertex phosphorylated TDN structure at the interface, possessing a one-year shelf-life. Moreover, it exhibits a significant horseradish peroxidase mimicking activity due to the iron porphyrin ring, which leads to a colorimetric reaction upon binding toward antibody-captured CEA. Using this method, we successfully achieved the highly specific and ultra-sensitive detection of CEA with a limit of detection as low as 3.3 pg/mL. In addition, this method can detect and analyze the target proteins in clinical serum samples, effectively identify the difference between normal individuals and patients with colon cancer, and provide a new method for the clinical diagnosis of tumors, demonstrating a great application potential.


Sign in / Sign up

Export Citation Format

Share Document