Black carbon over a high altitude Central Himalayan Glacier: Variability, transport, and radiative impacts

2021 ◽  
pp. 112017
Author(s):  
K. Sandeep ◽  
A.S. Panicker ◽  
Alok Sagar Gautam ◽  
G. Beig ◽  
Naveen Gandhi ◽  
...  
2021 ◽  
Vol 766 ◽  
pp. 144242
Author(s):  
A.S. Panicker ◽  
K. Sandeep ◽  
Alok Sagar Gautam ◽  
H.K. Trimbake ◽  
H.C. Nainwal ◽  
...  

Author(s):  
Guman Singh Meena ◽  
Subrata Mukherjee ◽  
Pallavi Buchunde ◽  
Pramod D. Safai ◽  
Vyoma Singla ◽  
...  

2011 ◽  
Vol 38 (8) ◽  
pp. n/a-n/a ◽  
Author(s):  
S. Suresh Babu ◽  
K. Krishna Moorthy ◽  
Ravi K. Manchanda ◽  
Puna Ram Sinha ◽  
S. K. Satheesh ◽  
...  

2009 ◽  
Vol 38 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Michael J. Gatari ◽  
Jan B. C. Pettersson ◽  
Wilson Kimani ◽  
Johan Boman

2020 ◽  
Vol 11 (8) ◽  
pp. 1408-1417
Author(s):  
M.P. Raju ◽  
P.D. Safai ◽  
S.M. Sonbawne ◽  
P.S. Buchunde ◽  
G. Pandithurai ◽  
...  

2011 ◽  
Vol 11 (18) ◽  
pp. 9735-9747 ◽  
Author(s):  
X. L. Pan ◽  
Y. Kanaya ◽  
Z. F. Wang ◽  
Y. Liu ◽  
P. Pochanart ◽  
...  

Abstract. Understanding the relationship between black carbon (BC) and carbon monoxide (CO) will help improve BC emission inventories and the evaluation of global/regional climate forcing effects. In the present work, the BC (PM1) mass concentration and CO mixing ratio were continuously measured at a high-altitude background station on the summit of Mt. Huang (30.16° N, 118.26° E, 1840 m a.s.l.). Annual mean BC mass concentration was 1004.5 ± 895.5 ng m−3 with maxima in spring and autumn, and annual mean CO mixing ratio was 424.1 ± 159.2 ppbv. A large increase of CO was observed in the cold season, implying the contribution from the large-scale domestic coal/biofuel combustion for heating. The BC-CO relationship was found to show different seasonal features but strong positive correlation (R>0.8). In Mt. Huang area, the ΔBC/ΔCO ratio showed unimodal diurnal variations and had a maximum during the day (09:00–17:00 LST) and minimum at night (21:00–04:00 LST) in all seasons, indicating the impact of planetary boundary layer and the intrusion of clean air masses from the high troposphere. Back trajectory cluster analysis showed that the ΔBC/ΔCO ratio of plumes from the Eastern China (Jiangsu, Zhejiang provinces and Shanghai) was 8.8 ± 0.9 ng m−3 ppbv−1. Transportation and industry were deemed as controlling factors of the BC-CO relationship in this region. The ΔBC/ΔCO ratios for air masses from Northern China (Anhui, Henan, Shanxi and Shandong provinces) and southern China (Jiangxi, Fujian and Hunan provinces) were quite similar with mean values of 6.5 ± 0.4 and 6.5 ± 0.2 ng m−3 ppbv−1 respectively. The case studies combined with satellite observations demonstrated that the ΔBC/ΔCO ratio for biomass burning (BB) plumes were 10.3 ± 0.3 and 11.6 ± 0.5ng m−3 ppbv−1, significantly higher than those during non-BB impacted periods. The loss of BC during transport was also investigated on the basis of the ΔBC/ΔCO-RH (relative humidity) relationship along air mass pathways. The results showed that BC particles from Eastern China area was much more easily removed from atmosphere than other inland regions due to the higher RH along transport pathway, implying the importance of chemical compositions and mixing states on BC residence time in the atmosphere.


2011 ◽  
Vol 11 (2) ◽  
pp. 4447-4485 ◽  
Author(s):  
X. L. Pan ◽  
Y. Kanaya ◽  
Z. F. Wang ◽  
Y. Liu ◽  
P. Pochanart ◽  
...  

Abstract. Understanding the relationship between black carbon (BC) and carbon monoxide (CO) will help improve BC emission inventories and the evaluation of global/regional climate forcing effects. In the present work, the BC (PM1) and CO mixing ratio was continuously measured at a~high-altitude background station on the summit of Mt Huangshan between 2006 and 2009. Annual mean BC concentration was 654.6 ± 633.4 ng m−3 with maxima in spring and autumn, when biomass was burned over a large area in Eastern China. The yearly averaged CO concentration was 446.4 ± 167.6 ppbv, and the increase in the CO concentration was greatest in the cold season, implying that the large-scale domestic coal/biofuel combustion for heating has an effect. The BC–CO relationship was found to have different seasonal features but strong positive correlation (R > 0.8). Back trajectory cluster analysis showed that the ΔBC/ΔCO ratio of plumes from the Yangtze River Delta region was 6.58 ± 0.96 ng m−3 ppbv−1, which is consistent with result from INTEX-B emission inventory. The ΔBC/ΔCO ratios for air masses from Northern, Central Eastern and Southern China were 5.2 ± 0.63, 5.65 ± 0.58 and 5.21 ± 0.93 ng m−3 ppbv−1, respectively. Over the whole observation period, the ΔBC/ΔCO ratio had unimodal diurnal variations and had a maximum during the day (09:00–17:00 LST) and minimum at night (21:00–04:00 LST) in spring, summer, autumn and winter, indicating the effects of the intrusion of clean air mass from the high troposphere. The case study combined with measurements of urban PM10 concentrations and satellite observations demonstrated that the ΔBC/ΔCO ratio for a plume of burning biomass was 12.4 ng m−3 ppbv−1 and that for urban plumes in Eastern China was 5.3 ± 0.53 ng m−3 ppbv−1. Transportation and industry were deemed as controlling factors of the BC–CO relationship and major contributions to atmospheric BC and CO loadings in urban areas. The loss of BC during transportation was also investigated on the basis of the ΔBC/ΔCO–RH relationship along air mass pathways, and the results showed that 30–50% BC was lost when air mass traveled under higher RH conditions (>60%) for 2 days.


2014 ◽  
Vol 32 (10) ◽  
pp. 1361-1371 ◽  
Author(s):  
C. Udayasoorian ◽  
R. M. Jayabalakrishnan ◽  
A. R. Suguna ◽  
Mukunda M. Gogoi ◽  
S. Suresh Babu

Abstract. Aerosol black carbon (BC) mass concentrations were continuously monitored over a period of 2 years (April 2010 to May 2012) from a high-altitude location Ooty in the Nilgiris Mountain range in southern India to characterize the distinct nature of absorbing aerosols and their seasonality. Despite being remote and sparsely inhabited, BC concentrations showed significant seasonality with higher values (~ 0.96 ± 0.35 μg m−3) in summer (March to May), attributed to increased vertical transport of effluents in the upwind valley regions, which might have been confined to the surrounding valley regions within the very shallow winter boundary layer. The local atmospheric boundary layer (ABL) influence in summer was further modulated by the long-range transported aerosols from the eastern locations of Ooty. During monsoon (June–August), the concentrations were far reduced (~ 0.23 ± 0.06 μg m−3) due to intense precipitation. Diurnal variations were found conspicuous mainly during summer season associated with local ABL. The spectral absorption coefficients (αabs) depicted, in general, flatter distribution (mostly < 1.0 for more than 85% of daily mean values), suggesting the relative dominance of fossil fuel combustion, though showed marginal seasonal change with higher values of αabs in summer.


Sign in / Sign up

Export Citation Format

Share Document