Feeding the world's increasing population while limiting climate change impacts: linking N2O and CH4 emissions from agriculture to population growth

2010 ◽  
Vol 13 (2) ◽  
pp. 89-96 ◽  
Author(s):  
Christy L. van Beek ◽  
Bastiaan G. Meerburg ◽  
René L.M. Schils ◽  
Jan Verhagen ◽  
Peter J. Kuikman
2018 ◽  
Author(s):  
Amy Hurford ◽  
Christina A. Cobbold ◽  
Péter K. Molnár

AbstractPopulation growth metrics such asR0are usually asymmetric functions of temperature, with cold-skewed curves arising when the positive effects of a temperature increase outweigh the negative effects, and warm-skewed curves arising in the opposite case. Classically, cold-skewed curves are interpreted as more beneficial to a species under climate warming, because cold-skewness implies increased population growth over a larger proportion of the species’ fundamental thermal niche than warm-skewness. However, inference based on the shape of the fitness curve alone, and without considering the synergistic effects of net reproduction, density, and dispersal may yield an incomplete understanding of climate change impacts. We formulate a moving-habitat integrodifference equation model to evaluate how fitness curve skewness affects species’ range size and abundance during climate warming. In contrast to classic interpretations, we find that climate warming adversely affects populations with cold-skewed fitness curves, positively affects populations with warm-skewed curves and has relatively little or mixed effects on populations with symmetric curves. Our results highlight the synergistic effects of fitness curve skewness, spatially heterogeneous densities, and dispersal in climate change impact analyses, and that the common approach of mapping changes only inR0may be misleading.


2019 ◽  
Vol 286 (1908) ◽  
pp. 20191157 ◽  
Author(s):  
Amy Hurford ◽  
Christina A. Cobbold ◽  
Péter K. Molnár

Population growth metrics such as R 0 are usually asymmetric functions of temperature, with cold-skewed curves arising when the positive effects of a temperature increase outweigh the negative effects, and warm-skewed curves arising in the opposite case. Classically, cold-skewed curves are interpreted as more beneficial to a species under climate warming, because cold-skewness implies increased population growth over a larger proportion of the species's fundamental thermal niche than warm-skewness. However, inference based on the shape of the fitness curve alone, and without considering the synergistic effects of net reproduction, density and dispersal, may yield an incomplete understanding of climate change impacts. We formulate a moving-habitat integrodifference equation model to evaluate how fitness curve skewness affects species’ range size and abundance during climate warming. In contrast to classic interpretations, we find that climate warming adversely affects populations with cold-skewed fitness curves, positively affects populations with warm-skewed curves and has relatively little or mixed effects on populations with symmetric curves. Our results highlight the synergistic effects of fitness curve skewness, spatially heterogeneous densities and dispersal in climate change impact analyses, and that the common approach of mapping changes only in R 0 may be misleading.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247290
Author(s):  
Allison M. Louthan ◽  
William Morris

Impacts of climate change can differ substantially across species’ geographic ranges, and impacts on a given population can be difficult to predict accurately. A commonly used approximation for the impacts of climate change on the population growth rate is the product of local changes in each climate variable (which may differ among populations) and the sensitivity (the derivative of the population growth rate with respect to that climate variable), summed across climate variables. However, this approximation may not be accurate for predicting changes in population growth rate across geographic ranges, because the sensitivities to climate variables or the rate of climate change may differ among populations. In addition, while this approximation assumes a linear response of population growth rate to climate, population growth rate is typically a nonlinear function of climate variables. Here, we use climate-driven integral projection models combined with projections of future climate to predict changes in population growth rate from 2008 to 2099 for an uncommon alpine plant species, Douglasia alaskana, in a rapidly warming location, southcentral Alaska USA. We dissect the causes of among-population variation in climate change impacts, including magnitude of climate change in each population and nonlinearities in population response to climate change. We show that much of the variation in climate change impacts across D. alaskana’s range arises from nonlinearities in population response to climate. Our results highlight the critical role of nonlinear responses to climate change impacts, suggesting that current responses to increases in temperature or changes in precipitation may not continue indefinitely under continued changes in climate. Further, our results suggest the degree of nonlinearity in climate responses and the shape of responses (e.g., convex or concave) can differ substantially across populations, such that populations may differ dramatically in responses to future climate even when their current responses are quite similar.


2021 ◽  
pp. 318-325
Author(s):  
Ulrike Munderloh ◽  
Timothy Kurtti

Abstract This expert opinion discusses evidence for global change (including rapid human population growth) and climate change impacts on the distribution and abundance of ticks on human and animal hosts as well as the prevalence and intensity of tick-borne diseases at the zoonotic interface in America.


2019 ◽  
Author(s):  
International Food Policy Research Institute (IFPRI)

Sign in / Sign up

Export Citation Format

Share Document