Vulnerability of rice production in the Inner Niger Delta to water resources management under climate variability and change

2013 ◽  
Vol 34 ◽  
pp. 18-33 ◽  
Author(s):  
S. Liersch ◽  
J. Cools ◽  
B. Kone ◽  
H. Koch ◽  
M. Diallo ◽  
...  
Author(s):  
Omer Zephir De Lasme ◽  
Avy Stephane Koffi ◽  
Dodo Guy Gnali Cedric

Study of climate variability gets great importance for integrated water resources management. This work examines impact of climate variability on the evolution of water resources in the Bandama sub-watershed at Sinematiali with a view of better management. The time series of rainfall and discharge were used as a database for this purpose. Known calculation hydrologic methods of Nicholson, Maillet as well as the statistical test for breaking detection (Pettitt test) were applied. The effective rain and recharge were estimated by using the ESPERE software models over the period 1980 to 1987. Climate variability is characterized by alternative season of wet, normal, and dry periods, and a pluviometry break occurred in 1984 year. The annual effective rain was assessed from 30 to 570 mm while recharge of aquifers estimated between 2 and 333 mm. This work constitutes a fundamental base for modeling water resources management at Sinematiali.


2018 ◽  
Vol 10 (4) ◽  
pp. 941 ◽  
Author(s):  
Tiezhu Yan ◽  
Jianwen Bai ◽  
Amelia LEE ZHI YI ◽  
Zhenyao Shen

The streamflow into Miyun Reservoir, the only surface drinking water source for Beijing City, has declined dramatically over the past five decades. Thus, the impacts of climate variability and human activities (direct and indirect human activities) on streamflow and its components (baseflow and quickflow) needs to be quantitatively estimated for the sustainability of regional water resources management. Based on a heuristic segmentation algorithm, the chosen study period (1969–2012) was segmented into three subseries: a baseline period (1969–1979) and two impact periods I (1980–1998) and II (1999–2012). The Soil and Water Assessment Tool (SWAT) was adopted to investigate the attributions for streamflow change. Our results indicated that the baseflow accounted for almost 63.5% of the annual streamflow based on baseflow separation. The contributions of climate variability and human activities to streamflow decrease varied with different stages. During impact period I, human activities was accountable for 54.3% of the streamflow decrease. In impact period II, climate variability was responsible for 64.9%, and about 8.3 mm of baseflow was extracted from the stream on average based on the comparison of the observed streamflow and simulated baseflow. The results in this study could provide necessary information for water resources management in the watershed.


2004 ◽  
Vol 49 (7) ◽  
pp. 17-24 ◽  
Author(s):  
R. Lenton

This paper provides an overview of the relationship between climate variability, integrated water resources management, and the achievement of the Millennium Development Goals. It focuses on tropical countries and the impacts of climate variability on the ability of such countries to achieve the MDGs; examines the coping strategies that must be put in place to address these challenges; and makes recommendations on steps forward.


2005 ◽  
Vol 51 (5) ◽  
pp. 97-103 ◽  
Author(s):  
P.J. Bereciartua

There is evidence of the increasing economic losses from extreme natural events during the last decades. These facts, thought to be triggered by environmental changes coupled with inefficient management and policies, highlight particularly exposed and vulnerable regions worldwide. Argentina faces several challenges associated with global environmental change and climate variability, especially related to water resources management including extreme floods and droughts. At the same time, the country's production capacity (i.e. natural resource-based commodities) and future development opportunities are closely tied to the sustainable development of its natural resource endowments. Given that vulnerability is registered not only by exposure to hazards (perturbations and stresses), but also resides in the sensitivity and resilience of the system experiencing such hazards, Argentina will need to improve its water management capacities to reduce its vulnerability to climate variability and change. This paper presents the basic components of the vulnerability analysis and suggests how it can be used to define efficient water management options.


2018 ◽  
Vol 4 (1) ◽  
pp. 32-38
Author(s):  
Bhimo Rizky Samudro ◽  
Yogi Pasca Pratama

This paper will describe the function of water resources to support business activities in Surakarta regency, Central Java province. Surakarta is a business city in Central Java province with small business enterprises and specific culture. This city has a famous river with the name is Bengawan Solo. Bengawan Solo is a River Flow Regional (RFR) to support business activities in Surakarta regency. Concious with the function, societies and local government in Surakarta must to manage the sustainability of River Flow Regional (RFR) Bengawan Solo. It is important to manage the sustainability of business activity in Surakarta regency.   According to the condition in Surakarta regency, this paper will explain how the simulation of Low Impact Development Model in Surakarta regency. Low Impact Development is a model that can manage and evaluate sustainability of water resources in River Flow Regional (RFR). Low Impact Development can analys goals, structures, and process water resources management. The system can also evaluate results and impacts of water resources management. From this study, we hope that Low Impact Development can manage water resources in River Flow Regional (RFR) Bengawan Solo.  


Waterlines ◽  
1998 ◽  
Vol 16 (4) ◽  
pp. 2-4 ◽  
Author(s):  
Frances Cleaver ◽  
Tom Franks

Sign in / Sign up

Export Citation Format

Share Document