scholarly journals Adaptive risk management strategies for governments under future climate and socioeconomic change: An application to riverine flood risk at the global level

2021 ◽  
Vol 125 ◽  
pp. 10-20
Author(s):  
Stefan Hochrainer-Stigler ◽  
Thomas Schinko ◽  
Andries Hof ◽  
Philip J. Ward
Author(s):  
Brenden Jongman ◽  
Hessel C. Winsemius ◽  
Stuart A. Fraser ◽  
Sanne Muis ◽  
Philip J. Ward

The flooding of rivers and coastlines is the most frequent and damaging of all natural hazards. Between 1980 and 2016, total direct damages exceeded $1.6 trillion, and at least 225,000 people lost their lives. Recent events causing major economic losses include the 2011 river flooding in Thailand ($40 billion) and the 2013 coastal floods in the United States caused by Hurricane Sandy (over $50 billion). Flooding also triggers great humanitarian challenges. The 2015 Malawi floods were the worst in the country’s history and were followed by food shortage across large parts of the country. Flood losses are increasing rapidly in some world regions, driven by economic development in floodplains and increases in the frequency of extreme precipitation events and global sea level due to climate change. The largest increase in flood losses is seen in low-income countries, where population growth is rapid and many cities are expanding quickly. At the same time, evidence shows that adaptation to flood risk is already happening, and a large proportion of losses can be contained successfully by effective risk management strategies. Such risk management strategies may include floodplain zoning, construction and maintenance of flood defenses, reforestation of land draining into rivers, and use of early warning systems. To reduce risk effectively, it is important to know the location and impact of potential floods under current and future social and environmental conditions. In a risk assessment, models can be used to map the flow of water over land after an intense rainfall event or storm surge (the hazard). Modeled for many different potential events, this provides estimates of potential inundation depth in flood-prone areas. Such maps can be constructed for various scenarios of climate change based on specific changes in rainfall, temperature, and sea level. To assess the impact of the modeled hazard (e.g., cost of damage or lives lost), the potential exposure (including buildings, population, and infrastructure) must be mapped using land-use and population density data and construction information. Population growth and urban expansion can be simulated by increasing the density or extent of the urban area in the model. The effects of floods on people and different types of buildings and infrastructure are determined using a vulnerability function. This indicates the damage expected to occur to a structure or group of people as a function of flood intensity (e.g., inundation depth and flow velocity). Potential adaptation measures such as land-use change or new flood defenses can be included in the model in order to understand how effective they may be in reducing flood risk. This way, risk assessments can demonstrate the possible approaches available to policymakers to build a less risky future.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2643
Author(s):  
Flavia Simona Cosoveanu ◽  
Jean-Marie Buijs ◽  
Marloes Bakker ◽  
Teun Terpstra

Diversification of flood risk management strategies (FRMS) in response to climate change relies on the adaptive capacities of institutions. Although adaptive capacities enable flexibility and adjustment, more empirical research is needed to better grasp the role of adaptive capacities to accommodate expected climate change effects. This paper presents an analytical framework based on the Adaptive Capacity Wheel (ACW) and Triple-loop Learning. The framework is applied to evaluate the adaptive capacities that were missing, employed, and developed throughout the ‘Alblasserwaard-Vijfheerenlanden’ (The Netherlands) and the ‘Wesermarsch’ (Germany) pilot projects. Evaluations were performed using questionnaires, interviews, and focus groups. From the 22 capacities of ACW, three capacities were identified important for diversifying the current FRMS; the capacity to develop a greater variety of solutions, continuous access to information about diversified FRMS, and collaborative leadership. Hardly any capacities related to ‘learning’ and ‘governance’ were mentioned by the stakeholders. From a further reflection on the data, we inferred that the pilot projects performed single-loop learning (incremental learning: ‘are we doing what we do right?’), rather than double-loop learning (reframing: ‘are we doing the right things?’). As the development of the framework is part of ongoing research, some directions for improvement are highlighted.


Water Policy ◽  
2015 ◽  
Vol 18 (2) ◽  
pp. 419-444 ◽  
Author(s):  
Rabindra Osti

The Hyogo Framework for Action (2005–2015) has been a long-standing international policy instrument for disaster risk management. However, many developing countries still lack the appropriate risk management policies and frameworks that suit the national and local needs. There is little or no discussion on the appropriate framework, approach and process for the implementation of international or national policies into the practices. There are many unanswered questions, particularly related to the standards and linkages among proposed tools such as damage, risk and need assessments, and their uses in the formulation of strategies and investment road maps. As a result, flood risk management related problems and issues are often addressed by many countries in an ad hoc and fragmented fashion. For many developing countries, the most pressing challenge at present is to find a trade-off between their capacity and risk reduction options. This paper discusses the current gaps and proposes the framework, approach, processes, and methodologies, in the form of guidelines, leading to the formulation of the flood risk management strategies and the investment road map.


Sign in / Sign up

Export Citation Format

Share Document