Gamma aminobutyric acid (GABA) production in Escherichia coli with pyridoxal kinase (pdxY) based regeneration system

Author(s):  
Sion Ham ◽  
Shashi Kant Bhatia ◽  
Ranjit Gurav ◽  
Yong-Keun Choi ◽  
Jong-Min Jeon ◽  
...  
Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 561 ◽  
Author(s):  
Kei-Anne Baritugo ◽  
Hee Taek Kim ◽  
Mi Na Rhie ◽  
Seo Young Jo ◽  
Tae Uk Khang ◽  
...  

Corynebacterium glutamicum is an industrial strain used for the production of valuable chemicals such as L-lysine and L-glutamate. Although C. glutamicum has various industrial applications, a limited number of tunable systems are available to engineer it for efficient production of platform chemicals. Therefore, in this study, we developed a novel tunable promoter system based on repeats of the Vitreoscilla hemoglobin promoter (Pvgb). Tunable expression of green fluorescent protein (GFP) was investigated under one, four, and eight repeats of Pvgb (Pvgb, Pvgb4, and Pvgb8). The intensity of fluorescence in recombinant C. glutamicum strains increased as the number of Pvgb increased from single to eight (Pvgb8) repeats. Furthermore, we demonstrated the application of the new Pvgb promoter-based vector system as a platform for metabolic engineering of C. glutamicum by investigating 5-aminovaleric acid (5-AVA) and gamma-aminobutyric acid (GABA) production in several C. glutamicum strains. The profile of 5-AVA and GABA production by the recombinant strains were evaluated to investigate the tunable expression of key enzymes such as DavBA and GadBmut. We observed that 5-AVA and GABA production by the recombinant strains increased as the number of Pvgb used for the expression of key proteins increased. The recombinant C. glutamicum strain expressing DavBA could produce higher amounts of 5-AVA under the control of Pvgb8 (3.69 ± 0.07 g/L) than the one under the control of Pvgb (3.43 ± 0.10 g/L). The average gamma-aminobutyric acid production also increased in all the tested strains as the number of Pvgb used for GadBmut expression increased from single (4.81–5.31 g/L) to eight repeats (4.94–5.58 g/L).


Gut ◽  
1991 ◽  
Vol 32 (9) ◽  
pp. 1007-1010 ◽  
Author(s):  
H al Mardini ◽  
B al Jumaili ◽  
C O Record ◽  
D Burke

2015 ◽  
Vol 38 (2) ◽  
pp. 321-327 ◽  
Author(s):  
Van Dung Pham ◽  
Sivachandiran Somasundaram ◽  
Seung Hwan Lee ◽  
Si Jae Park ◽  
Soon Ho Hong

2018 ◽  
Vol 32 (3) ◽  
pp. 566-573 ◽  
Author(s):  
Chongrong Ke ◽  
Jie Wei ◽  
Yang Ren ◽  
Xinwei Yang ◽  
Jia Chen ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
E. Patterson ◽  
P. M. Ryan ◽  
N. Wiley ◽  
I. Carafa ◽  
E. Sherwin ◽  
...  

Abstract Metabolic and neuroactive metabolite production represents one of the mechanisms through which the gut microbiota can impact health. One such metabolite, gamma-aminobutyric acid (GABA), can modulate glucose homeostasis and alter behavioural patterns in the host. We previously demonstrated that oral administration of GABA-producing Lactobacillus brevis DPC6108 has the potential to increase levels of circulating insulin in healthy rats. Therefore, the objective of this study was to assess the efficacy of endogenous microbial GABA production in improving metabolic and behavioural outcomes in a mouse model of metabolic dysfunction. Diet-induced obese and metabolically dysfunctional mice received one of two GABA-producing strains, L. brevis DPC6108 or L. brevis DSM32386, daily for 12 weeks. After 8 and 10 weeks of intervention, the behavioural and metabolic profiles of the mice were respectively assessed. Intervention with both L. brevis strains attenuated several abnormalities associated with metabolic dysfunction, causing a reduction in the accumulation of mesenteric adipose tissue, increased insulin secretion following glucose challenge, improved plasma cholesterol clearance and reduced despair-like behaviour and basal corticosterone production during the forced swim test. Taken together, this exploratory dataset indicates that intervention with GABA-producing lactobacilli has the potential to improve metabolic and depressive- like behavioural abnormalities associated with metabolic syndrome in mice.


Sign in / Sign up

Export Citation Format

Share Document