Continental subduction and exhumation of high-pressure rocks: insights from thermo-mechanical laboratory modelling

2004 ◽  
Vol 222 (1) ◽  
pp. 209-216 ◽  
Author(s):  
David Boutelier ◽  
Alexandre Chemenda ◽  
Cedric Jorand
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kristóf Porkoláb ◽  
Thibault Duretz ◽  
Philippe Yamato ◽  
Antoine Auzemery ◽  
Ernst Willingshofer

AbstractContinental subduction below oceanic plates and associated emplacement of ophiolite sheets remain enigmatic chapters in global plate tectonics. Numerous ophiolite belts on Earth exhibit a far-travelled ophiolite sheet that is separated from its oceanic root by tectonic windows exposing continental crust, which experienced subduction-related high pressure-low temperature metamorphism during obduction. However, the link between continental subduction-exhumation dynamics and far-travelled ophiolite emplacement remains poorly understood. Here we combine data collected from ophiolite belts worldwide with thermo-mechanical simulations of continental subduction dynamics to show the causal link between the extrusion of subducted continental crust and the emplacement of far-travelled ophiolites. Our results reveal that buoyancy-driven extrusion of subducted crust triggers necking and breaking of the overriding oceanic upper plate. The broken-off piece of oceanic lithosphere is then transported on top of the continent along a flat thrust segment and becomes a far-travelled ophiolite sheet separated from its root by the extruded continental crust. Our results indicate that the extrusion of the subducted continental crust and the emplacement of far-travelled ophiolite sheets are inseparable processes.


2010 ◽  
Vol 95 (8-9) ◽  
pp. 1214-1223 ◽  
Author(s):  
H. Cheng ◽  
S. A. DuFrane ◽  
J. D. Vervoort ◽  
E. Nakamura ◽  
Y.-F. Zheng ◽  
...  

2021 ◽  
Author(s):  
Kristóf Porkoláb ◽  
Thibault Duretz ◽  
Philippe Yamato ◽  
Antoine Auzemery ◽  
Ernst Willingshofer

<p>Continental subduction below oceanic plates and associated emplacement of ophiolite sheets remain enigmatic chapters in global plate tectonics. Numerous ophiolite belts on Earth exhibit a far-travelled ophiolite sheet that is separated from its oceanic root by tectonic windows exposing continental crust, which experienced subduction-related high pressure-low temperature (HP-LT) metamorphism during obduction. However, the link between continental subduction-exhumation dynamics and far-travelled ophiolite emplacement remains poorly understood. We combine data collected from ophiolite belts worldwide with thermo-mechanical simulations of continental subduction dynamics to show the causal link between the extrusion of subducted continental crust and the emplacement of far-travelled ophiolite sheets. Our results reveal that buoyancy-driven extrusion of subducted crust triggers necking and breaking of the overriding oceanic upper plate. The broken-off piece of oceanic lithosphere is then transported on top of the continent along a flat thrust segment and becomes a far-travelled ophiolite sheet separated from its root by the extruded continental crust. Our results indicate that the extrusion of the subducted continental crust and the emplacement of far-travelled ophiolite sheets are inseparable processes.</p>


Sign in / Sign up

Export Citation Format

Share Document