Metasomatic flow of metacarbonate-derived fluids carrying isotopically heavy boron in continental subduction zones: Insights from tourmaline-bearing ultra-high pressure eclogites and veins (Dabie terrane, eastern China)

2019 ◽  
Vol 253 ◽  
pp. 159-200 ◽  
Author(s):  
Shun Guo ◽  
Kuidong Zhao ◽  
Timm John ◽  
Pan Tang ◽  
Yi Chen ◽  
...  
2012 ◽  
Vol 4 (1) ◽  
pp. 745-781 ◽  
Author(s):  
C. J. Warren

Abstract. The exhumation of high and ultra-high pressure rocks is ubiquitous in Phanerozoic orogens created during continental collisions, and is common in many ocean-ocean and ocean-continent subduction zone environments. Three different tectonic environments have previously been reported, which exhume deeply buried material by different mechanisms and at different rates. However it is becoming increasingly clear that no single mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. In order for buoyant continental crust to subduct, it must remain attached to a stronger and denser substrate, but in order to exhume, it must detach (and therefore at least locally weaken) and be initially buoyant. Denser oceanic crust subducts more readily than more buoyant continental crust but exhumation must be assisted by entrainment within more buoyant and weak material such as serpentinite or driven by the exhumation of structurally lower continental crustal material. Weakening mechanisms responsible for the detachment of crust at depth include strain, hydration, melting, grain size reduction and the development of foliation. These may act locally or may act on the bulk of the subducted material. Metamorphic reactions, metastability and the composition of the subducted crust all affect buoyancy and overall strength. Subduction zones change in style both in time and space, and exhumation mechanisms change to reflect the tectonic style and overall force regime within the subduction zone. Exhumation events may be transient and occur only once in a particular subduction zone or orogen, or may be more continuous or occur multiple times.


2000 ◽  
Vol 35 (3-4) ◽  
pp. 185-207 ◽  
Author(s):  
Robert Schmid ◽  
Leander Franz ◽  
Roland Oberhänsli ◽  
Shuwen Dong

2020 ◽  
Author(s):  
Jungjin Lee ◽  
Haemyeong Jung ◽  
Reiner Klemd ◽  
Matthew Tarling ◽  
Dmitry Konopelko

<p>Strong seismic anisotropy is generally observed in subduction zones. Lattice preferred orientation (LPO) of olivine and elastically anisotropic hydrous minerals has been considered to be an important factor causing anomalous seismic anisotropy. For the first time, we report on measured LPOs of polycrystalline talc. The study comprises subduction-related ultra-high-pressure metamorphic schists from the Makbal Complex in Kyrgyzstan-Kazakhstan and amphibolite-facies metasomatic schists from the Valla Field Block in Unst, Scotland. The here studied talc revealed a strong alignment of [001] axes (sub)normal to the foliation and a girdle distribution of [100] axes and (010) poles (sub)parallel to the foliation. The LPOs of polycrystalline talc produced a significant P–wave anisotropy (AVp = 72%) and a high S–wave anisotropy (AVs = 24%). The results imply that the LPO of talc influence both the strong trench-parallel azimuthal anisotropy and positive/negative radial anisotropy of P–waves, and the trench-parallel seismic anisotropy of S–waves in subduction zones.</p>


1993 ◽  
Vol 69 (10) ◽  
pp. 249-254 ◽  
Author(s):  
Takao HIRAJIMA ◽  
Simon R. WALLIS ◽  
Mingguo ZHAI ◽  
Kai YE

Terra Nova ◽  
1999 ◽  
Vol 11 (6) ◽  
pp. 251-258 ◽  
Author(s):  
M. Faure ◽  
W. Lin ◽  
L. Shu ◽  
Y. Sun ◽  
U. Scharer

Sign in / Sign up

Export Citation Format

Share Document