scholarly journals Slickenline orientations as a record of fault rock rheology

2014 ◽  
Vol 408 ◽  
pp. 24-34 ◽  
Author(s):  
James D. Kirkpatrick ◽  
Emily E. Brodsky
Keyword(s):  
2015 ◽  
Vol 7 (1) ◽  
Author(s):  
László Molnár ◽  
Balázs Vásárhelyi ◽  
Tivadar M. Tóth ◽  
Félix Schubert

AbstractThe integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.


2020 ◽  
pp. 223-236
Author(s):  
Sanda Cleja-Tigoiu ◽  
Ervin Medves
Keyword(s):  

2014 ◽  
Vol 119 (12) ◽  
pp. 8728-8747 ◽  
Author(s):  
Anne M.H. Pluymakers ◽  
Jon E. Samuelson ◽  
André R. Niemeijer ◽  
Christopher J. Spiers

2021 ◽  
Author(s):  
Jose Manuel Guevara ◽  
Mary Grace Jubb ◽  
Abdulla Seliem ◽  
Hilario Camacho ◽  
Jorge Mario Lozano

Abstract The main goal of this paper is contributing to the understanding to the structural geology, development, and evolution of traps associated with strike-slip restraining bend and restraining step-over structures as a key petroleum system element in southeastern Abu Dhabi. We introduce a preliminary classification scheme for these relatively small, low-relief features defined here as pop-up structures. These structures represent different evolutionary stages of strike-slip restraining bends formed along prominent WNW-trending strike-slip fault systems in southeastern Abu Dhabi. The proposed classification scheme was summarized as a chart to illustrate the correlation between the degree of structural deformation and seal integrity, and estimates the likelihood of finding multiple, vertically stacked, productive reservoirs. It also leads to a more detailed discussion on others important characteristics of pop-up structures and provides a better understanding of sealing mechanisms such as fault juxtaposition, fault throw analysis, fault slip tendency, fault rock processes, and the role of the development of hybrid flower structures in the area. We will also show a simple case study based on two exploratory wells that targeted two pop-up structures with different degrees of deformation in southeast Abu Dhabi. This case study illustrates the complex relationship between pop-up evolution, timing of trap formation, seal integrity, trap preservation, and multiple petroleum generation and migration events. Pop-up structures are linked to multiple episodes of trap and seal evolution, where several episodes of hydrocarbon migration, charge, and leaking of hydrocarbons may occur.


Author(s):  
Arito Sakaguchi ◽  
Shunji Yokoyama ◽  
Yoshitaka Hashimoto ◽  
Tomomasa Yamada ◽  
Akio Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document