Inferring crustal viscosity from seismic velocity: Application to the lower crust of Southern California

2018 ◽  
Vol 494 ◽  
pp. 83-91 ◽  
Author(s):  
William J. Shinevar ◽  
Mark D. Behn ◽  
Greg Hirth ◽  
Oliver Jagoutz
2021 ◽  
Author(s):  
Estelle Delouche ◽  
Laurent Stehly

<p>Our aim is to monitor the temporal evolution of the crust in Greece, with a particular focus on the Gulf of Corinth.  Indeed, Greece is one of the most exposed country to earthquakes in Europe. The Gulf of Corinth,  is known for its fast extension rate of about 15 mm/yr in the western part and 10mm/yr in the eastern part. This fast extension is associated with recurrent seismic swarms and by a few destructive earthquakes. This seismicity is likely the result of a combination of multiple driving processes including fluid migration at depth.</p><p>In the present work, we use seismic noise recorded from 2010 to 2020 by all seismic stations deployed in Greece, and in particular by the dense Corinth Rift Laboratory network, to compute the seismic velocity variation (dv/v) in several subregions. By comparing the result obtained at different periods, we are able to distinguish the temporal evolution of the upper, mid and lower crust. This temporal evolution is compared to the seismicity of the Gulf of Corinth.</p>


2020 ◽  
Author(s):  
Tomasz Janik ◽  
Vitaly Starostenko ◽  
Paweł Aleksandrowski ◽  
Tamara Yegorova ◽  
Wojciech Czuba ◽  
...  

<p>Crustal and uppermost mantle structure along the Teisseyre-Tornquist Zone (TTZ)  was explored along the ~550 km long, NW-SE-trending TTZ-South profile, using seismic wide-angle reflection/refraction (WARR) method. The profile line was intended to follow the border between the East European Craton (EEC) and the so called Palaeozoic Platform (PP) of north-central Europe, believed to contain a number of crustal blocks that were accreted to the craton during pre-late Carboniferous times, defining the Trans-European Suture Zone (TESZ).</p><p>The seismic velocity model of the TTZ-South profile shows lateral variations in crustal structure. Its Ukrainian segment crosses the interior of the Sarmatian segment of the EEC, where the crystalline basement gradually dips from ~2 km depth in the SE to ~12 km at the Ukrainian-Polish border. This part of the model shows a four-layered crustal structure, with an up to 15 km-thick sedimentary cover, an underlying crystalline upper crust, a 10-15 km-thick middle crust and a ~15 km thick lower crust. In Poland, the profile passes along the TESZ/EEC transition zone of complex crustal structure. The crystalline basement, whose top occurs at depths of 10-17 km, separates the sedimentary cover from the ~10 km thick mid-crustal layer (Vp=6.5-6.6 km/s), which, in turn, overlies a block of 10-15 km thickness with upper crustal velocities (Vp~6.2 km/s). The latter is underlain by a ~10-15 km-thick lower crust. Along most of the model one can see conspicuous velocity inversion zones occuring at various depths. At intersections of the TTZ-South profile with some previous deep seismic profiles (e.g. CEL02, CEL05, CEL14, PANCAKE) such inversions document complex wedging relationships between the EEC and PP crustal units. These may have resulted from tectonic compression and thick-skinned thrusting due to either Neoproterozoic EEC collision with accreting terranes or intense Variscan orogenic events. Five high velocity bodies (HVB; V<sub>p</sub> = 6.85-7.2 km/s) were detected in the middle and lower crust at 15-37 km depth. The Moho depth varies substantially along the profile. It is at ~42 km depth in the NW and deepens SE-ward to ~50 km at ~685 km. Subsequently, it rises abruptly to ~43 km at the border of the Sarmatian segment of the EEC and sinks again to ~50 km beneath the Lviv Paleozoic trough at ~785 km. From this point until the SE end of the profile, the Moho gently shallows, up to a depth of ~37 km, including a step-like jump of 2 km at ~875 km. Such abrupt Moho steps may be related to crust-scale strike-slip faults. Along the whole profile, sub-Moho velocities are ~8.05-8.1 km/s, and at depths of 57-63 km Vp values reach 8.2-8.25 km/s. Four reflectors/refractors were modelled in the upper mantle at ~57-65 km and ~80 km depths.</p>


2016 ◽  
Vol 205 (3) ◽  
pp. 1342-1364 ◽  
Author(s):  
Ricardo Taborda ◽  
Shima Azizzadeh-Roodpish ◽  
Naeem Khoshnevis ◽  
Keli Cheng

2019 ◽  
Vol 71 (1) ◽  
Author(s):  
Hiroo Tsuda ◽  
Yoshihisa Iio ◽  
Takuo Shibutani

Abstract A long linear distribution of epicenters is seen along the Japan Sea coast in the San-in district located in southwestern Japan. This linear distribution of epicenters is called the seismic belt in the San-in district. The localization of intraplate earthquakes in the San-in district, far from plate boundaries, is not well understood. To answer this question, we look at the seismic velocity structure of the lower crust beneath the San-in district using seismic travel-time tomography. Our results show the existence of a low-velocity anomaly in the lower crust beneath the seismic belt. We infer that the deformation was concentrated in the low-velocity zone due to compressive stress caused by the subduction of oceanic plates, that stress concentration occurred just above the low-velocity zone, and that the seismic belt was therefore formed there. We also calculated the cutoff depths of shallow intraplate earthquakes in the San-in district. Based on the results, we consider the possible causes of the low-velocity anomaly in the lower crust beneath the seismic belt. We found that the cutoff depths of the intraplate earthquakes were shallower in the eastern part of the low-velocity zone in the lower crust beneath the seismic belt and deeper in the western part. Thus, the eastern part is likely to be hotter than the western part. We inferred that the eastern part was hot because a hot mantle upwelling approaches the Moho discontinuity below it and the resulting high temperature may be the main cause of the low-velocity anomaly. On the other hand, in the western part, we inferred that the temperature is not high because the mantle upwelling may not exist at shallow depth, and water dehydrated from the Philippine Sea plate reaches the lower crust, and the existence of this water may be the main cause of the low-velocity anomaly.


1977 ◽  
Vol 67 (3) ◽  
pp. 725-734
Author(s):  
William H. Menke

abstract Three-dimensional seismic-velocity heterogeneities (to a depth of 125 km) under the Tarbela array are determined by the Aki et al. (1976a) method of inverting teleseismic travel-time residuals. Velocity anomalies are clearly present and are elongated in the northwest direction. An overall 2 to 3 per cent decrease in velocity to the northeast is observed across any horizontal layer. These features result from a 4° dip of geologic structures in the direction N41°E. This direction is similar to some observed trends of seismicity in the Tarbela area and to the trend of the Himalayan Main Central Thrust (MCT) east and north of Tarbela, but not to the trend of the fault traces nor the strike of geologic structures in the Tarbela area. Just to the southeast of the Tarbela array, these faults bend sharply westward, forming a mountainous loop. In this study it is concluded that the westerly trending fault traces and westerly striking geology are both only surficial and not representative of structures at greater depth. These deep structures within the lower crust and upper mantle preserve a strike similar to more eastern areas along the MCT. They are shown to be volumetrically and tectonically the more important features.


Sign in / Sign up

Export Citation Format

Share Document