Applying load profiles propagation to machine learning based electrical energy forecasting

2022 ◽  
Vol 203 ◽  
pp. 107635
Author(s):  
N.M.M. Bendaoud ◽  
N. Farah ◽  
S. Ben Ahmed
2021 ◽  
pp. 1-26
Author(s):  
Hala Hamdoun ◽  
Alaa Sagheer ◽  
Hassan Youness

Machine learning methods have been adopted in the literature as contenders to conventional methods to solve the energy time series forecasting (TSF) problems. Recently, deep learning methods have been emerged in the artificial intelligence field attaining astonishing performance in a wide range of applications. Yet, the evidence about their performance in to solve the energy TSF problems, in terms of accuracy and computational requirements, is scanty. Most of the review articles that handle the energy TSF problem are systematic reviews, however, a qualitative and quantitative study for the energy TSF problem is not yet available in the literature. The purpose of this paper is twofold, first it provides a comprehensive analytical assessment for conventional, machine learning, and deep learning methods that can be utilized to solve various energy TSF problems. Second, the paper carries out an empirical assessment for many selected methods through three real-world datasets. These datasets related to electrical energy consumption problem, natural gas problem, and electric power consumption of an individual household problem. The first two problems are univariate TSF and the third problem is a multivariate TSF. Compared to both conventional and machine learning contenders, the deep learning methods attain a significant improvement in terms of accuracy and forecasting horizons examined. In the meantime, their computational requirements are notably greater than other contenders. Eventually, the paper identifies a number of challenges, potential research directions, and recommendations to the research community may serve as a basis for further research in the energy forecasting domain.


2017 ◽  
Vol 7 (2) ◽  
pp. 155 ◽  
Author(s):  
Hai Lan ◽  
He Yin ◽  
Shuli Wen ◽  
Ying-Yi Hong ◽  
David Yu ◽  
...  

2020 ◽  
Vol 23 (1) ◽  
pp. 171-180
Author(s):  
Kusum Tharani ◽  
Neeraj Kumar ◽  
Vishal Srivastava ◽  
Sakshi Mishra ◽  
M. Pratyush Jayachandran

Author(s):  
M. Fouad ◽  
R. Mali ◽  
A. Lmouatassime ◽  
M. Bousmah

Abstract. The current electricity grid is no longer an efficient solution due to increasing user demand for electricity, old infrastructure and reliability issues requires a transformation to a better grid which is called Smart Grid (SG). Also, sensor networks and Internet of Things (IoT) have facilitated the evolution of traditional electric power distribution networks to new SG, these networks are a modern electricity grid infrastructure with increased efficiency and reliability with automated control, high power converters, modern communication infrastructure, sensing and measurement technologies and modern energy management techniques based on optimization of demand, energy and availability network. With all these elements, harnessing the science of Artificial Intelligence (AI) and Machine Learning (ML) methods become better used than before for prediction of energy consumption. In this work we present the SG with their architecture, the IoT with the component architecture and the Smart Meters (SM) which play a relevant role for the collection of information of electrical energy in real time, then we treat the most widely used ML methods for predicting electrical energy in buildings. Then we clarify the relationship and interaction between the different SG, IoT and ML elements through the design of a simple to understand model, composed of layers that are grouped into entities interacting with links. In this article we calculate a case of prediction of the electrical energy consumption of a real Dataset with the two methods Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM), given their precision performances.


10.29007/mbb7 ◽  
2020 ◽  
Author(s):  
Maher Selim ◽  
Ryan Zhou ◽  
Wenying Feng ◽  
Omar Alam

Many statistical and machine learning models for prediction make use of historical data as an input and produce single or small numbers of output values. To forecast over many timesteps, it is necessary to run the program recursively. This leads to a compounding of errors, which has adverse effects on accuracy for long forecast periods. In this paper, we show this can be mitigated through the addition of generating features which can have an “anchoring” effect on recurrent forecasts, limiting the amount of compounded error in the long term. This is studied experimentally on a benchmark energy dataset using two machine learning models LSTM and XGBoost. Prediction accuracy over differing forecast lengths is compared using the forecasting MAPE. It is found that for LSTM model the accuracy of short term energy forecasting by using a past energy consumption value as a feature is higher than the accuracy when not using past values as a feature. The opposite behavior takes place for the long term energy forecasting. For the XGBoost model, the accuracy for both short and long term energy forecasting is higher when not using past values as a feature.


2021 ◽  
Author(s):  
Aida Mehdipour Pirbazari

Digitalization and decentralization of energy supply have introduced several challenges to emerging power grids known as smart grids. One of the significant challenges, on the demand side, is preserving the stability of the power systems due to locally distributed energy sources such as micro-power generation and storage units among energy prosumers at the household and community levels. In this context, energy prosumers are defined as energy consumers who also generate, store and trade energy. Accurate predictions of energy supply and electric demand of prosuemrs can address the stability issues at local levels. This study aims to develop appropriate forecasting frameworks for such environments to preserve power stability. Building on existing work on energy forecasting at low-aggregated levels, it asks: What factors influence most on consumption and generation patterns of residential customers as energy prosumers. It also investigates how the accuracy of forecasting models at the household and community levels can be improved. Based on a review of the literature on energy forecasting and per- forming empirical study on real datasets, the forecasting frameworks were developed focusing on short-term prediction horizons. These frameworks are built upon predictive analytics including data col- lection, data analysis, data preprocessing, and predictive machine learning algorithms based on statistical learning, artificial neural networks and deep learning. Analysis of experimental results demonstrated that load observa- tions from previous hours (lagged loads) along with air temperature and time variables highly affects the households’ consumption and generation behaviour. The results also indicate that the prediction accuracy of adopted machine learning techniques can be improved by feeding them with highly influential variables and appliance-level data as well as by combining multiple learning algorithms ranging from conventional to deep neural networks. Further research is needed to investigate online approaches that could strengthen the effectiveness of forecasting in time-sensitive energy environments.


Sign in / Sign up

Export Citation Format

Share Document