Low-carbon energy transition from the commanding heights: How state-owned enterprises drive China’s wind power “miracle”

2022 ◽  
Vol 85 ◽  
pp. 102392
Author(s):  
Mengye Zhu ◽  
Ye Qi ◽  
Nathan Hultman
Author(s):  
Michael R. Davidson ◽  
Fredrich Kahrl ◽  
Valerie J. Karplus

The authors propose a general taxonomy of the political economy challenges to wind power development and integration, highlighting the implications in terms of actors, interests, and risks. Applying this framework to three functions in China’s electricity sector—planning and project approval, generator cost recovery, and balancing area coordination—the authors find evidence of challenges common across countries with significant wind investments, despite institutional and industry characteristics that are unique to China. The authors argue that resolving these political economy challenges is as important to facilitating the role of wind and other renewable energies in a low-carbon energy transition as providing dedicated technical and energy policy support. China is no exception.


2010 ◽  
Vol 14 (2) ◽  
pp. 83-93 ◽  
Author(s):  
Binu Parthan ◽  
Marianne Osterkorn ◽  
Matthew Kennedy ◽  
St. John Hoskyns ◽  
Morgan Bazilian ◽  
...  

2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


2021 ◽  
Vol 73 (09) ◽  
pp. 50-50
Author(s):  
Ardian Nengkoda

For this feature, I have had the pleasure of reviewing 122 papers submitted to SPE in the field of offshore facilities over the past year. Brent crude oil price finally has reached $75/bbl at the time of writing. So far, this oil price is the highest since before the COVID-19 pandemic, which is a good sign that demand is picking up. Oil and gas offshore projects also seem to be picking up; most offshore greenfield projects are dictated by economics and the price of oil. As predicted by some analysts, global oil consumption will continue to increase as the world’s economy recovers from the pandemic. A new trend has arisen, however, where, in addition to traditional economic screening, oil and gas investors look to environment, social, and governance considerations to value the prospects of a project and minimize financial risk from environmental and social issues. The oil price being around $75/bbl has not necessarily led to more-attractive offshore exploration and production (E&P) projects, even though the typical offshore breakeven price is in the range of $40–55/bbl. We must acknowledge the energy transition, while also acknowledging that oil and natural gas will continue to be essential to meeting the world’s energy needs for many years. At least five European oil and gas E&P companies have announced net-zero 2050 ambitions so far. According to Rystad Energy, continuous major investments in E&P still are needed to meet growing global oil and gas demand. For the past 2 years, the global investment in E&P project spending is limited to $200 billion, including offshore, so a situation might arise with reserve replacement becoming challenging while demand accelerates rapidly. Because of well productivity, operability challenges, and uncertainty, however, opening the choke valve or pipeline tap is not as easy as the public thinks, especially on aging facilities. On another note, the technology landscape is moving to emerging areas such as net-zero; decarbonization; carbon capture, use, and storage; renewables; hydrogen; novel geothermal solutions; and a circular carbon economy. Historically, however, the Offshore Technology Conference began proactively discussing renewables technology—such as wave, tidal, ocean thermal, and solar—in 1980. The remaining question, then, is how to balance the lack of capital expenditure spending during the pandemic and, to some extent, what the role of offshore is in the energy transition. Maximizing offshore oil and gas recovery is not enough anymore. In the short term, engaging the low-carbon energy transition as early as possible and leading efforts in decarbonization will become a strategic move. Leveraging our expertise in offshore infrastructure, supply chains, sea transportation, storage, and oil and gas market development to support low-carbon energy deployment in the energy transition will become vital. We have plenty of technical knowledge and skill to offer for offshore wind projects, for instance. The Hywind wind farm offshore Scotland is one example of a project that is using the same spar technology as typical offshore oil and gas infrastructure. Innovation, optimization, effective use of capital and operational expenditures, more-affordable offshore technology, and excellent project management, no doubt, also will become a new normal offshore. Recommended additional reading at OnePetro: www.onepetro.org. SPE 202911 - Harnessing Benefits of Integrated Asset Modeling for Bottleneck Management of Large Offshore Facilities in the Matured Giant Oil Field by Yukito Nomura, ADNOC, et al. OTC 30970 - Optimizing Deepwater Rig Operations With Advanced Remotely Operated Vehicle Technology by Bernard McCoy Jr., TechnipFMC, et al. OTC 31089 - From Basic Engineering to Ramp-Up: The New Successful Execution Approach for Commissioning in Brazil by Paulino Bruno Santos, Petrobras, et al.


Author(s):  
Mary E. Clayton ◽  
Ashlynn S. Stillwell ◽  
Michael E. Webber

With a push toward renewable electricity generation, wind power has grown substantially in recent U.S. history and technologies continue to improve. However, the intermittency associated with wind-generated electricity without storage has limited the amounts sold on the grid. Furthermore, continental wind farms have a diurnal and seasonal variability that is mismatched with demand. To increase the broader use of wind power technologies, the development of systems that can operate intermittently during off-peak hours must be considered. Utilization of wind-generated electricity for desalination of brackish groundwater presents opportunities to increase use of a low-carbon energy source and supply alternative drinking water that is much needed in some areas. As existing water supplies dwindle and population grows, cities are looking for new water sources. Desalination of brackish groundwater provides one potential water source for inland cities. However, this process is energy-intensive, and therefore potentially incongruous with goals of reducing carbon emissions. Desalination using reverse osmosis is a high-value process that does not require continuous operation and therefore could utilize variable wind power. That is, performing desalination in an intermittent way to match wind supply can help mitigate the challenges of integrating wind into the grid while transforming a low-value product (brackish water and intermittent power) into a high-value product (treated drinking water). This option represents a potentially more economic form of mitigating wind variability than current electricity storage technologies. Also, clean energy and carbon policies under consideration by the U.S. Congress could help make this integration more economically feasible due to incentives for low-carbon energy sources. West Texas is well-suited for desalination of brackish groundwater using wind power, as both resources are abundant and co-located. Utility-scale wind resource potential is found in most of the region. Additionally, brackish groundwater is found at depths less than 150 m, making west Texas a useful geographic testbed to analyze for this work, with applicability for areas with similar climates and water supply scarcity. Implementation of a wind-powered desalination project requires both economic and geographic feasibility. Capital and operating cost data for wind turbines and desalination membranes were used to perform a thermoeconomic analysis to determine the economic feasibility. The availability of wind and brackish groundwater resources were modeled using geographic information systems tools to illustrate areas where implementation of a wind-powered desalination project is economically feasible. Areas with major populations were analyzed further in the context of existing and alternative water supplies. Utilization of wind-generated electricity for desalination presents a feasible alternative to energy storage methods. Efficiency, economics, and ease of development and operation of off-peak water treatment were compared to different energy storage technologies: pumped hydro, batteries, and compressed air energy storage. Further economics of compressed air energy storage and brackish groundwater desalination were examined with a levelized lifetime cost approach. Implementation of water desalination projects using wind-generated electricity might become essential in communities with wind and brackish groundwater resources that are facing water quality and quantity issues and as desires to implement low carbon energy sources increase. This analysis assesses the economic and geographic feasibility and tradeoffs of such projects for areas in Texas.


2020 ◽  
Vol 163 ◽  
pp. 105072
Author(s):  
Gondia Sokhna Seck ◽  
Emmanuel Hache ◽  
Clément Bonnet ◽  
Marine Simoën ◽  
Samuel Carcanague

2019 ◽  
Vol 24 ◽  
pp. 26-31
Author(s):  
Md. Raisul Islam Sourav

This article contains a doctrinal analysis of the law and policy encouragement towards a low carbon energy transition in the Scotland. To do this, the present article is primarily focused on electricity sector of the Scotland and its commitment towards a low carbon transition in this sector in coming years. This article analyzes the existing significant laws and policies in Scotland that encourage towards a low carbon transition. However, it also evaluates international obligation upon the Scotland and the UK, as well, towards this transition. Subsequently, it assesses the UK’s legal framework in this regard. However, Scotland is firmly committed to achieve its targets towards a low carbon transition in the power sector although it needs more incentive and tight observation of the government to smoothen the process.


Sign in / Sign up

Export Citation Format

Share Document