The use of energy system models for analysing the transition to low-carbon cities – The case of Oslo

2017 ◽  
Vol 15 ◽  
pp. 44-56 ◽  
Author(s):  
Arne Lind ◽  
Kari Espegren
2011 ◽  
Vol 37 (4) ◽  
pp. 462-502 ◽  
Author(s):  
Toshihiko Nakata ◽  
Diego Silva ◽  
Mikhail Rodionov

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4819
Author(s):  
Jabir Ali Ouassou ◽  
Julian Straus ◽  
Marte Fodstad ◽  
Gunhild Reigstad ◽  
Ove Wolfgang

Conventional energy production based on fossil fuels causes emissions that contribute to global warming. Accurate energy system models are required for a cost-optimal transition to a zero-emission energy system, which is an endeavor that requires a methodical modeling of cost reductions due to technological learning effects. In this review, we summarize common methodologies for modeling technological learning and associated cost reductions via learning curves. This is followed by a literature survey to uncover learning rates for relevant low-carbon technologies required to model future energy systems. The focus is on (i) learning effects in hydrogen production technologies and (ii) the application of endogenous learning in energy system models. Finally, we discuss methodological shortcomings of typical learning curves and possible remedies. One of our main results is an up-to-date overview of learning rates that can be applied in energy system models.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1447-1452
Author(s):  
Vincent Mazauric ◽  
Ariane Millot ◽  
Claude Le Pape-Gardeux ◽  
Nadia Maïzi

To overcome the negative environemental impact of the actual power system, an optimal description of quasi-static electromagnetics relying on a reversible interpretation of the Faraday’s law is given. Due to the overabundance of carbon-free energy sources, this description makes it possible to consider an evolution towards an energy system favoring low-carbon technologies. The management for changing is then explored through a simplified linear-programming problem and an analogy with phase transitions in physics is drawn.


2021 ◽  
Author(s):  
Osamah Alsayegh

Abstract This paper examines the energy transition consequences on the oil and gas energy system chain as it propagates from net importing through the transit to the net exporting countries (or regions). The fundamental energy system security concerns of importing, transit, and exporting regions are analyzed under the low carbon energy transition dynamics. The analysis is evidence-based on diversification of energy sources, energy supply and demand evolution, and energy demand management development. The analysis results imply that the energy system is going through technological and logistical reallocation of primary energy. The manifestation of such reallocation includes an increase in electrification, the rise of energy carrier options, and clean technologies. Under healthy and normal global economic growth, the reallocation mentioned above would have a mild effect on curbing the oil and gas primary energy demands growth. A case study concerning electric vehicles, which is part of the energy transition aspect, is presented to assess its impact on the energy system, precisely on the fossil fuel demand. Results show that electric vehicles are indirectly fueled, mainly from fossil-fired power stations through electric grids. Moreover, oil byproducts use in the electric vehicle industry confirms the reallocation of the energy system components' roles. The paper's contribution to the literature is the portrayal of the energy system security state under the low carbon energy transition. The significance of this representation is to shed light on the concerns of the net exporting, transit, and net importing regions under such evolution. Subsequently, it facilitates the development of measures toward mitigating world tensions and conflicts, enhancing the global socio-economic wellbeing, and preventing corruption.


Sign in / Sign up

Export Citation Format

Share Document