scholarly journals Maximizing both the firm power and power generation of hydropower station considering the ecological requirement in fish spawning season

2020 ◽  
Vol 30 ◽  
pp. 100496
Author(s):  
Fang-Fang Li ◽  
Hong-Ru Wang ◽  
Zhi-Gang Wu ◽  
Jun Qiu
2021 ◽  
Vol 68 (3) ◽  
Author(s):  
Guo Wei ◽  
Yao Liqiang ◽  
Wu Guang Dong ◽  
Cui Fu Ning ◽  
Shao Jun ◽  
...  

Concentrating Solar Power (CSP) plants utilize thermal conversion of direct solar irradiation. A trough or tower configuration focuses solar radiation and heats up oil or molten salt that subsequently in high temperature heat exchangers generate steam for power generation. High temperature molten salt can be stored and the stored heat can thus increase the load factor and the usability for a CSP plant, e.g. to cover evening peak demand. In the HYSOL concept (HYbrid SOLar) such configuration is extended further to include a gas turbine fuelled by upgraded biogas or natural gas. The optimised integrated HYSOL concept, therefore, becomes a fully dispatchable (offering firm power) and fully renewable energy source (RES) based power supply alternative, offering CO2-free electricity in regions with sufficient solar resources. The economic feasibility of HYSOL configurations is addressed in this paper. The analysis is performed from a socio- and private- economic perspective. In the socio-economic analysis, the CO2 free HYSOL alternative is discussed relative to conventional reference firm power generation technologies. In particular the HYSOL performance relative to new power plants based on natural gas (NG) such as open cycle or combined cycle gas turbines (OCGT or CCGT) are in focus. In the corporate-economic analysis the focus is on the uncertain technical and economic parameters. The core of the analyses is based on the LCOE economic indicator. In the corporate economic analysis, NPV and IRR are furthermore used to assess the feasibility. The feasibility of renewable based HYSOL power plant configurations attuned to specific electricity consumption patterns in selected regions with promising solar energy potentials are discussed.


Author(s):  
Richard Perez ◽  
Marc Perez ◽  
Sergey Kivalov ◽  
James Schlemmer ◽  
John Dise ◽  
...  

We introduce firm solar forecasts as a strategy to operate optimally overbuilt solar power plants in conjunction with optimally sized storage systems so as to make up for any power prediction errors, hence entirely remove load balancing uncertainty emanating from grid-connected solar fleets. A central part of this strategy is plant overbuilding that we term implicit storage. We show that strategy, while economically justifiable on its own account, is an effective entry step to least-cost ultra-high solar penetration where firm power generation will be a prerequisite. We demonstrate that in absence of an implicit storage strategy, ultra-high solar penetration would be vastly more expensive. Using the New York Independent System Operator (NYISO) as a case study, we determine current and future cost of firm forecasts for a comprehensive set of scenarios in each ISO electrical region, comparing centralized vs. decentralized production and assessing load flexibility’s impact. We simulate the growth of the strategy from firm forecast to firm power generation. We conclude that ultra-high solar penetration enabled by the present strategy, whereby solar would firmly supply the entire NYISO load, could be achieved locally at electricity production costs comparable to current NYISO wholesale market prices.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 132703-132720
Author(s):  
Guangbiao Liu ◽  
Jianzhong Zhou ◽  
Yuqi Yang ◽  
Shenglin Ke ◽  
Li Mo ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4489
Author(s):  
Richard Perez ◽  
Marc Perez ◽  
James Schlemmer ◽  
John Dise ◽  
Thomas E. Hoff ◽  
...  

We introduce firm solar forecasts as a strategy to operate optimally overbuilt solar power plants in conjunction with optimally sized storage systems so as to make up for any power prediction errors, and hence entirely remove load balancing uncertainty emanating from grid-connected solar fleets. A central part of this strategy is the plant overbuilding that we term implicit storage. We show that strategy, while economically justifiable on its own account, is an effective entry step to achieving least-cost ultra-high solar penetration where firm power generation will be a prerequisite. We demonstrate that in the absence of an implicit storage strategy, ultra-high solar penetration would be vastly more expensive. Using the New York Independent System Operator (NYISO) as a case study, we determine current and future costs of firm forecasts for a comprehensive set of scenarios in each ISO electrical region, comparing centralized vs. decentralized production and assessing load flexibility’s impact. We simulate the growth of the strategy from firm forecast to firm power generation. We conclude that ultra-high solar penetration enabled by the present strategy, whereby solar would firmly supply the entire NYISO load, could be achieved locally at electricity production costs comparable to current NYISO wholesale market prices.


2020 ◽  
Vol 147 ◽  
pp. 105749
Author(s):  
Hang Wan ◽  
Jilong Li ◽  
Ran Li ◽  
Jingjie Feng ◽  
Zhifeng Sun

Sign in / Sign up

Export Citation Format

Share Document