scholarly journals From Firm Solar Power Forecasts to Firm Solar Power Generation an Effective Path to Ultra-High Renewable Penetration a New York Case Study

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4489
Author(s):  
Richard Perez ◽  
Marc Perez ◽  
James Schlemmer ◽  
John Dise ◽  
Thomas E. Hoff ◽  
...  

We introduce firm solar forecasts as a strategy to operate optimally overbuilt solar power plants in conjunction with optimally sized storage systems so as to make up for any power prediction errors, and hence entirely remove load balancing uncertainty emanating from grid-connected solar fleets. A central part of this strategy is the plant overbuilding that we term implicit storage. We show that strategy, while economically justifiable on its own account, is an effective entry step to achieving least-cost ultra-high solar penetration where firm power generation will be a prerequisite. We demonstrate that in the absence of an implicit storage strategy, ultra-high solar penetration would be vastly more expensive. Using the New York Independent System Operator (NYISO) as a case study, we determine current and future costs of firm forecasts for a comprehensive set of scenarios in each ISO electrical region, comparing centralized vs. decentralized production and assessing load flexibility’s impact. We simulate the growth of the strategy from firm forecast to firm power generation. We conclude that ultra-high solar penetration enabled by the present strategy, whereby solar would firmly supply the entire NYISO load, could be achieved locally at electricity production costs comparable to current NYISO wholesale market prices.

Author(s):  
Richard Perez ◽  
Marc Perez ◽  
Sergey Kivalov ◽  
James Schlemmer ◽  
John Dise ◽  
...  

We introduce firm solar forecasts as a strategy to operate optimally overbuilt solar power plants in conjunction with optimally sized storage systems so as to make up for any power prediction errors, hence entirely remove load balancing uncertainty emanating from grid-connected solar fleets. A central part of this strategy is plant overbuilding that we term implicit storage. We show that strategy, while economically justifiable on its own account, is an effective entry step to least-cost ultra-high solar penetration where firm power generation will be a prerequisite. We demonstrate that in absence of an implicit storage strategy, ultra-high solar penetration would be vastly more expensive. Using the New York Independent System Operator (NYISO) as a case study, we determine current and future cost of firm forecasts for a comprehensive set of scenarios in each ISO electrical region, comparing centralized vs. decentralized production and assessing load flexibility’s impact. We simulate the growth of the strategy from firm forecast to firm power generation. We conclude that ultra-high solar penetration enabled by the present strategy, whereby solar would firmly supply the entire NYISO load, could be achieved locally at electricity production costs comparable to current NYISO wholesale market prices.


2020 ◽  
Vol 12 (11) ◽  
pp. 4739
Author(s):  
Faisal Asfand ◽  
Patricia Palenzuela ◽  
Lidia Roca ◽  
Adèle Caron ◽  
Charles-André Lemarié ◽  
...  

The use of wet cooling in Concentrated Solar Power (CSP) plants tends to be an unfavourable option in regions where water is scarce due to the high water requirements of the method. Dry-cooling systems allow a water consumption reduction of up to 80% but at the expense of lower electricity production. A hybrid cooling system (the combination of dry and wet cooling) offers the advantages of each process in terms of lower water consumption and higher electricity production. A model of a CSP plant which integrates a hybrid cooling system has been implemented in Thermoflex software. The water consumption and the net power generation have been evaluated for different configurations of the hybrid cooling system: series, parallel, series-parallel and parallel-series. It was found that the most favourable configuration in terms of water saving was series-parallel, in which a water reduction of up to 50% is possible compared to the only-wet cooling option, whereas an increase of 2.5% in the power generation is possible compared to the only-dry cooling option. The parallel configuration was the best in terms of power generation with an increase of 3.2% when compared with the only-dry cooling option, and a reduction of 30% water consumption compared to the only-wet cooling option.


2021 ◽  
Vol 11 (15) ◽  
pp. 6887
Author(s):  
Chung-Hong Lee ◽  
Hsin-Chang Yang ◽  
Guan-Bo Ye

In recent years, many countries have provided promotion policies related to renewable energy in order to take advantage of the environmental factors of sufficient sunlight. However, the application of solar energy in the power grid also has disadvantages. The most obvious is the variability of power output, which will put pressure on the system. As more grid reserves are needed to compensate for fluctuations in power output, the variable nature of solar power may hinder further deployment. Besides, one of the main issues surrounding solar energy is the variability and unpredictability of sunlight. If it is cloudy or covered by clouds during the day, the photovoltaic cell cannot produce satisfactory electricity. How to collect relevant factors (variables) and data to make predictions so that the solar system can increase the power generation of solar power plants is an important topic that every solar supplier is constantly thinking about. The view is taken, therefore, in this work, we utilized the historical monitoring data collected by the ground-connected solar power plants to predict the power generation, using daily characteristics (24 h) to replace the usual seasonal characteristics (365 days) as the experimental basis. Further, we implemented daily numerical prediction of the whole-point power generation. The preliminary experimental evaluations demonstrate that our developed method is sensible, allowing for exploring the performance of solar power prediction.


Energy Policy ◽  
2016 ◽  
Vol 97 ◽  
pp. 618-627 ◽  
Author(s):  
Rasika Athawale ◽  
Frank A. Felder ◽  
Leo A. Goldman

1999 ◽  
Vol 23 (1B) ◽  
pp. 213-223
Author(s):  
A. Ong’iro ◽  
V.I. Ugursal ◽  
A.M. Al Taweel

A computerized techno-economic model that can be used to predict the thermal, environmental and economic aspects of integrated gasification combined cycles (IGCC) using fluidized bed gasifiers was developed. A brief description of the model is presented and representative applications of the model are demonstrated with a case study. The results verify the favourable characteristics of IGCC systems (i.e. high thermal efficiency, low levelized unit electricity cost, and reduced pollution emissions) and illustrate the effect of various parameters on the performance of IGCC power plants. Models for IGCC with moving bed and entrained bed gasifiers are presented elsewhere.


Author(s):  
Collins O. Ojo ◽  
Damien Pont ◽  
Enrico Conte ◽  
Richard Carroni

The integration of steam from a central-receiver solar field into a combined cycle power plant (CCPP) provides an option to convert solar energy into electricity at the highest possible efficiency, because of the high pressure and temperature conditions of the solar steam, and at the lowest capital investment, because the water-steam cycle of the CCPP is in shared use with the solar field. From the operational point of view, the plant operator has the option to compensate the variability of the solar energy with fossil fuel electricity production, to use the solar energy to save fuel and to boost the plant power output, while reducing the environmental footprint of the plant operation. Alstom is able to integrate very large amounts of solar energy in its new combined-cycle power plants, in the range of the largest solar field ever built (Ivanpah Solar Power Facility, California, 3 units, total 392 MWel). The performance potential of such integration is analyzed both at base load and at part load operation of the plant. Additionally, the potential for solar retrofit of existing combined-cycle power plants is assessed. In this case, other types of concentrating solar power technologies than central receiver (linear Fresnel and trough) may be best suited to the specific conditions. Alstom is able to integrate any of these technologies into existing combined-cycle power plants.


Sign in / Sign up

Export Citation Format

Share Document