Study of the Scheduling Rules of Short-term Power Generation Dispatching for Single Hydropower Station

Author(s):  
Chang-ming Ji ◽  
Wei Xie ◽  
Zi-jun Yang ◽  
Xiao-xing Zhang ◽  
Xin-liang Zhu
2021 ◽  
Vol 296 ◽  
pp. 126564
Author(s):  
Md Alamgir Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss Elsawah ◽  
Michael J. Ryan

2021 ◽  
Vol 13 (12) ◽  
pp. 6681
Author(s):  
Simian Pang ◽  
Zixuan Zheng ◽  
Fan Luo ◽  
Xianyong Xiao ◽  
Lanlan Xu

Forecasting of large-scale renewable energy clusters composed of wind power generation, photovoltaic and concentrating solar power (CSP) generation encounters complex uncertainties due to spatial scale dispersion and time scale random fluctuation. In response to this, a short-term forecasting method is proposed to improve the hybrid forecasting accuracy of multiple generation types in the same region. It is formed through training the long short-term memory (LSTM) network using spatial panel data. Historical power data and meteorological data for CSP plant, wind farm and photovoltaic (PV) plant are included in the dataset. Based on the data set, the correlation between these three types of power generation is proved by Pearson coefficient, and the feasibility of improving the forecasting ability through the hybrid renewable energy clusters is analyzed. Moreover, cases study indicates that the uncertainty of renewable energy cluster power tends to weaken due to partial controllability of CSP generation. Compared with the traditional prediction method, the hybrid prediction method has better prediction accuracy in the real case of renewable energy cluster in Northwest China.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1717
Author(s):  
Wanxing Ma ◽  
Zhimin Chen ◽  
Qing Zhu

With the fast expansion of renewable energy systems during recent years, the stability and quality of smart grids using solar energy have been challenged because of the intermittency and fluctuations. Hence, forecasting photo-voltaic (PV) power generation is essential in facilitating planning and managing electricity generation and distribution. In this paper, the ultra-short-term forecasting method for solar PV power generation is investigated. Subsequently, we proposed a radial basis function (RBF)-based neural network. Additionally, to improve the network generalization ability and reduce the training time, the numbers of hidden layer neurons are limited. The input of neural network is selected as the one with higher Spearman correlation among the predicted power features. The data are normalized and the expansion parameter of RBF neurons are adjusted continuously in order to reduce the calculation errors and improve the forecasting accuracy. Numerous simulations are carried out to evaluate the performance of the proposed forecasting method. The mean absolute percentage error (MAPE) of the testing set is within 10%, which show that the power values of the following 15 min. can be predicted accurately. The simulation results verify that our method shows better performance than other existing works.


Energy ◽  
2020 ◽  
Vol 212 ◽  
pp. 118700
Author(s):  
Chengdong Li ◽  
Changgeng Zhou ◽  
Wei Peng ◽  
Yisheng Lv ◽  
Xin Luo

2018 ◽  
Vol 2018 ◽  
pp. 1-29
Author(s):  
Zhe Yang ◽  
Kan Yang ◽  
Lyuwen Su ◽  
Hu Hu

The short-term hydro generation scheduling (STHGS) decomposed into unit commitment (UC) and economic load dispatch (ELD) subproblems is complicated problem with integer optimization, which has characteristics of high dimension, nonlinear and complex hydraulic and electrical constraints. In this study, the improved binary-real coded shuffled frog leaping algorithm (IBR-SFLA) is proposed to effectively solve UC and ELD subproblems, respectively. For IB-SFLA, the new grouping strategy is applied to overcome the grouping shortage of SFLA, and modified search strategies for each type of frog subpopulation based on normal cloud model (NCM) and chaotic theory are introduced to enhance search performance. The initialization strategy with chaos theory and adaptive frog activation mechanism are presented to strengthen performance of IR-SFLA on ELD subproblem. Furthermore, to solve ELD subproblem, the optimal economic operation table is formed using IR-SFLA and invoked from database. Moreover, reserve capacity supplement and repair, and minimum on and off time repairing strategies are applied to handle complex constraints in STHGS. Finally, the coupled external and internal model corresponding to UC and ELD subproblems is established and applied to solve STHGS problem in Three Gorges hydropower station. Simulation results obtained from IBR-SFLA are better than other compared algorithms with less water consumption. In conclusion, to solve STHGS optimization problem, the proposed IBR-SFLA presents outstanding performance on solution precision and convergence speed compared to traditional SFLA effectively and outperforms the rivals to get higher precision solution with improving the utilization rate of waterpower resources.


Sign in / Sign up

Export Citation Format

Share Document