Modeling Li-ion concentration distribution and stress of porous electrode particles considering binder and direct particle contact

2021 ◽  
Vol 44 ◽  
pp. 103315
Author(s):  
Yang Wu ◽  
Zhan-Sheng Guo
Nano Letters ◽  
2021 ◽  
Author(s):  
Xiao Zhang ◽  
Zeyu Hui ◽  
Steven King ◽  
Lei Wang ◽  
Zhengyu Ju ◽  
...  
Keyword(s):  

2020 ◽  
Vol 449 ◽  
pp. 227361 ◽  
Author(s):  
Zi Wei ◽  
Amir Salehi ◽  
Guanzhou Lin ◽  
Jie Hu ◽  
Xinfang Jin ◽  
...  

2020 ◽  
Vol MA2020-01 (1) ◽  
pp. 83-83
Author(s):  
Juan Alfonso Campos ◽  
Abhas Deva ◽  
Jarrod Lund ◽  
Aniruddha Jana ◽  
Ilenia Battiato ◽  
...  

2014 ◽  
Vol 711 ◽  
pp. 481-484
Author(s):  
Yu Chen ◽  
Jie Xu ◽  
Rong Gui Liu ◽  
Su Bi Chen ◽  
Yuan Gao

Based on the existing studies about chloride ion erosion in prestressed concrete structures, this paper intends to discuss the effects of the stress level and environment factors (including temperature and humidity, etc.) on chloride ion diffusion under marine atmosphere zone. The investigation from pre-stressed concrete crossbeams which service for 39 years in Lianyungang Port shows the chloride ion concentration distribution and chloride ion diffusion. According to the chloride ion concentration distribution, it finds that chloride ion concentration values in pre-concrete structures is Cmax,1> Cmax,2. In addition, the free chloride concentration distribution values go down smoothly after the second peak. Therefore, the result shows that the improved model can be used in marine atmosphere zone.


2021 ◽  
Author(s):  
Julia Hestenes ◽  
Richard May ◽  
Jerzy Sadowski ◽  
Naiara Munich ◽  
Lauren Marbella

The high specific capacities of Ni-rich transition metal oxides have garnered immense interest for improving the energy density of Li-ion batteries (LIBs). Despite the potential of these materials, Ni-rich cathodes suffer from interfacial instabilities that lead to crystallographic rearrangement of the active material surface as well as the formation of a cathode electrolyte interphase (CEI) layer on the composite during electrochemical cycling. While changes in crystallographic structure can be detected with diffraction-based methods, probing the chemistry of the disordered, heterogeneous CEI layer is challenging. In this work, we use a combination of ex situ solid-state nuclear magnetic resonance (SSNMR) spectroscopy and X-ray photoemission electron microscopy (XPEEM) to provide chemical and spatial information on the CEI deposited on LiNi0.8Mn0.1Co0.1O2 (NMC811) composite cathode films. Specifically, XPEEM elemental maps offer insight into the lateral arrangement of the electrolyte decomposition products that comprise the CEI and paramagnetic interactions (assessed with electron paramagnetic resonance (EPR) and relaxation measurements) in 13C SSNMR provide information on the radial arrangement of the CEI from the NMC811 particles outward. Using this approach, we find that LiF, Li2CO3, and carboxy-containing structures are directly appended to NMC811 active particles, whereas soluble species detected during in situ 1H and 19F solution NMR experiments (e.g., alkyl carbonates, HF, and vinyl compounds) are randomly deposited on the composite surface. We show that the combined approach of ex situ SSNMR and XPEEM, in conjunction with in situ solution NMR, allows spatially-resolved, molecular-level characterization of paramagnetic surfaces and new insights into electrolyte oxidation mechanisms in porous electrode films.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6381
Author(s):  
Yuchen He ◽  
Qiang Huang ◽  
Yu He ◽  
Haifeng Ji ◽  
Tao Zhang ◽  
...  

In this work, a new capacitively coupled contactless conductivity detection (C4D) sensor for microfluidic devices is developed. By introducing an LC circuit, the working frequency of the new C4D sensor can be lowered by the adjustments of the inductor and the capacitance of the LC circuit. The limits of detection (LODs) of the new C4D sensor for conductivity/ion concentration measurement can be improved. Conductivity measurement experiments with KCl solutions were carried out in microfluidic devices (500 µm × 50 µm). The experimental results indicate that the developed C4D sensor can realize the conductivity measurement with low working frequency (less than 50 kHz). The LOD of the C4D sensor for conductivity measurement is estimated to be 2.2 µS/cm. Furthermore, to show the effectiveness of the new C4D sensor for the concentration measurement of other ions (solutions), SO42− and Li+ ion concentration measurement experiments were also carried out at a working frequency of 29.70 kHz. The experimental results show that at low concentrations, the input-output characteristics of the C4D sensor for SO42− and Li+ ion concentration measurement show good linearity with the LODs estimated to be 8.2 µM and 19.0 µM, respectively.


Sign in / Sign up

Export Citation Format

Share Document