Comprehensive study on poly ortho-aminophenol composite electrodes and their utilization for supercapacitor applications and green energy storage: A review

2021 ◽  
Vol 44 ◽  
pp. 103365
Author(s):  
Raouf Aliakbari ◽  
Elaheh Kowsari ◽  
Yousef Marfavi ◽  
Seeram Ramakrishna ◽  
Amutha Chinnappan ◽  
...  
2021 ◽  
Vol 43 ◽  
pp. 103155
Author(s):  
Bogale Abebe Mola ◽  
G. Mani ◽  
Sangaraju Sambasivam ◽  
Mohan Reddy Pallavolu ◽  
Ayman A. Ghfar ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Tsung-Sheng Chen ◽  
Shu-Ling Huang ◽  
Mei-Ling Chen ◽  
Tz-Jiun Tsai ◽  
Yung-Sheng Lin

This study developed composite electrodes used in a semi-vanadium/iodine redox flow battery (semi-V-I RFB) system and designed semi-V-I RFB stacks to provide performance comparable to that of an all-vanadium redox flow battery (all-VRFB) system. These electrodes were modified using the electroless plating method and sol-gel process. The basic characteristics of the composited electrodes, such as the surface structural morphology, metal crystal phases, and electrochemical properties, were verified through cyclic voltammetry, field emission-scanning electron microscopy, energy-dispersive X-ray spectrometry, and X-ray diffraction. The results show that the sintering C–TiO2–Pd electrode improved the electrocatalytic activity of the semi-V-I RFB system, thereby effectively increasing the energy storage ability of the system. The C–TiO2–Pd electrode was used as a negative electrode in a single semi-V-I RFB and exhibited excellent cyclic performance in a charge-discharge test of 50 cycles. The average values for coulomb efficiency, voltage efficiency, and energy efficiency were approximately 96.56%, 84.12%, and 81.23%, respectively. Moreover, the semi-V-I RFB stacks were designed using series or parallel combination methods that can effectively provide the desired operating voltage and linearly increase the power capacity. The amount of vanadium salt required to fabricate the semi-V-I RFB system can be reduced by combining large stack modules of the system. Therefore, this system not only reduced costs but also exhibited potential for applications in energy storage systems.


2022 ◽  
Vol 9 ◽  
Author(s):  
Adriana M. Navarro-Suárez ◽  
Milo S. P. Shaffer

Structural energy storage devices (SESDs), designed to simultaneously store electrical energy and withstand mechanical loads, offer great potential to reduce the overall system weight in applications such as automotive, aircraft, spacecraft, marine and sports equipment. The greatest improvements will come from systems that implement true multifunctional materials as fully as possible. The realization of electrochemical SESDs therefore requires the identification and development of suitable multifunctional structural electrodes, separators, and electrolytes. Different strategies are available depending on the class of electrochemical energy storage device and the specific chemistries selected. Here, we review existing attempts to build SESDs around carbon fiber (CF) composite electrodes, including the use of both organic and inorganic compounds to increase electrochemical performance. We consider some of the key challenges and discuss the implications for the selection of device chemistries.


Author(s):  
Manikandan Kandasamy ◽  
Surjit Sahoo ◽  
Saroj K Nayak ◽  
Brahmananda Chakraborty ◽  
Chandra Sekhar Rout

Supercapacitors are widely accepted as one of the energy storage devices in the realm of the sustainable and renewable energy storage world. Supercapacitors emerge as good alternate for traditional capacitors...


2014 ◽  
pp. 1550-1578
Author(s):  
Ahmed Elgafy

With the urgent need to harvest and store solar energy, especially with the dramatic unexpected changes in oil prices, the design of new generation of solar energy storage systems has grown in importance. Besides diminishing the role of the oil, these systems provide green energy which would help reducing air pollution. Solar energy would be stored in different forms of energy; thermal, electric, hybrid thermal/electric, thermochemical, photochemical, and photocapacitors. The nature of solar energy, radiant thermal energy, magnifies the role and usage of thermal energy storage (TES) techniques. In this chapter, different techniques/technologies for solar thermal energy storage are introduced for both terrestrial and space applications. Enhancing the performance of these techniques using nanotechnology is introduced as well as using of advanced materials and structures. The chapter also introduces the main features of the other techniques for solar energy storage along with recent conducted research work. Economic and environment feasibility studies are also introduced.


Author(s):  
Ahmed Elgafy

With the urgent need to harvest and store solar energy, especially with the dramatic unexpected changes in oil prices, the design of new generation of solar energy storage systems has grown in importance. Besides diminishing the role of the oil, these systems provide green energy which would help reducing air pollution. Solar energy would be stored in different forms of energy; thermal, electric, hybrid thermal/electric, thermochemical, photochemical, and photocapacitors. The nature of solar energy, radiant thermal energy, magnifies the role and usage of thermal energy storage (TES) techniques. In this chapter, different techniques/technologies for solar thermal energy storage are introduced for both terrestrial and space applications. Enhancing the performance of these techniques using nanotechnology is introduced as well as using of advanced materials and structures. The chapter also introduces the main features of the other techniques for solar energy storage along with recent conducted research work. Economic and environment feasibility studies are also introduced.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3268
Author(s):  
Mehdi Dhifli ◽  
Abderezak Lashab ◽  
Josep M. Guerrero ◽  
Abdullah Abusorrah ◽  
Yusuf A. Al-Turki ◽  
...  

This paper proposes an enhanced energy management system (EEMS) for a residential AC microgrid. The renewable energy-based AC microgrid with hybrid energy storage is broken down into three distinct parts: a photovoltaic (PV) array as a green energy source, a battery (BT) and a supercapacitor (SC) as a hybrid energy storage system (HESS), and apartments and electric vehicles, given that the system is for residential areas. The developed EEMS ensures the optimal use of the PV arrays’ production, aiming to decrease electricity bills while reducing fast power changes in the battery, which increases the reliability of the system, since the battery undergoes fewer charging/discharging cycles. The proposed EEMS is a hybrid control strategy, which is composed of two stages: a state machine (SM) control to ensure the optimal operation of the battery, and an operating mode (OM) for the best operation of the SC. The obtained results show that the EEMS successfully involves SC during fast load and PV generation changes by decreasing the number of BT charging/discharging cycles, which significantly increases the system’s life span. Moreover, power loss is decreased during passing clouds phases by decreasing the power error between the extracted power by the sources and the required equivalent; the improvement in efficiency reaches 9.5%.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5434
Author(s):  
Ram Lal Shrestha ◽  
Rashma Chaudhary ◽  
Timila Shrestha ◽  
Birendra Man Tamrakar ◽  
Rekha Goswami Shrestha ◽  
...  

Of the available environmentally friendly energy storage devices, supercapacitors are the most promising because of their high energy density, ultra-fast charging-discharging rate, outstanding cycle life, cost-effectiveness, and safety. In this work, nanoporous carbon materials were prepared by applying zinc chloride activation of lotus seed powder from 600 °C to 1000 °C and the electrochemical energy storage (supercapacitance) of the resulting materials in aqueous electrolyte (1M H2SO4) are reported. Lotus seed-derived activated carbon materials display hierarchically porous structures comprised of micropore and mesopore architectures, and exhibited excellent supercapacitance performances. The specific surface areas and pore volumes were found in the ranges 1103.0–1316.7 m2 g−1 and 0.741–0.887 cm3 g−1, respectively. The specific capacitance of the optimum sample was ca. 317.5 F g−1 at 5 mV s−1 and 272.9 F g−1 at 1 A g−1 accompanied by high capacitance retention of 70.49% at a high potential sweep rate of 500 mV s−1. The electrode also showed good rate capability of 52.1% upon increasing current density from 1 to 50 A g−1 with exceptional cyclic stability of 99.2% after 10,000 cycles demonstrating the excellent prospects for agricultural waste stuffs, such as lotus seed, in the production of the high performance porous carbon materials required for supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document