IACS-HCSP: Improved ant colony optimization for large-scale home care scheduling problems

2020 ◽  
Vol 142 ◽  
pp. 112994
Author(s):  
Emilio Martin ◽  
Alejandro Cervantes ◽  
Yago Saez ◽  
Pedro Isasi
2019 ◽  
Vol 9 (2) ◽  
pp. 79-85
Author(s):  
Indah Noviasari ◽  
Andre Rusli ◽  
Seng Hansun

Students and scheduling are both essential parts in a higher educational institution. However, after schedules are arranged and students has agreed to them, there are some occasions that can occur beyond the control of the university or lecturer which require the courses to be cancelled and arranged for replacement course schedules. At Universitas Multimedia Nusantara, an agreement between lecturers and students manually every time to establish a replacement course. The agreement consists of a replacement date and time that will be registered to the division of BAAK UMN which then enter the new schedule to the system. In this study, Ant Colony Optimization algorithm is implemented for scheduling replacement courses to make it easier and less time consuming. The Ant Colony Optimization (ACO) algorithm is chosen because it is proven to be effective when implemented to many scheduling problems. Result shows that ACO could enhance the scheduling system in Universitas Multimedia Nusantara, which specifically tested on the Department of Informatics replacement course scheduling system. Furthermore, the newly built system has also been tested by several lecturers of Informatics UMN with a good level of perceived usefulness and perceived ease of use. Keywords—scheduling system, replacement course, Universitas Multimedia Nusantara, Ant Colony Optimization


2021 ◽  
Vol 14 (1) ◽  
pp. 270-280
Author(s):  
Abhijit Halkai ◽  
◽  
Sujatha Terdal ◽  

A sensor network operates wirelessly and transmits detected information to the base station. The sensor is a small sized device, it is battery-powered with some electrical components, and the protocols should operate efficiently in such least resource availability. Here, we propose a novel improved framework in large scale applications where the huge numbers of sensors are distributed over an area. The designed protocol will address the issues that arise during its communication and give a consistent seamless communication system. The process of reasoning and learning in cognitive sensors guarantees data delivery in the network. Localization in Scarce and dense sensor networks is achieved by efficient cluster head election and route selection which are indeed based on cognition, improved Particle Swarm Optimization, and improved Ant Colony Optimization algorithms. Factors such as mobility, use of sensor buffer, power management, and defects in channels have been identified and solutions are presented in this research to build an accurate path based on the network context. The achieved results in extensive simulation prove that the proposed scheme outperforms ESNA, NETCRP, and GAECH algorithms in terms of Delay, Network lifetime, Energy consumption.


Genes ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 114 ◽  
Author(s):  
Boxin Guan ◽  
Yuhai Zhao

The epistatic interactions of single nucleotide polymorphisms (SNPs) are considered to be an important factor in determining the susceptibility of individuals to complex diseases. Although many methods have been proposed to detect such interactions, the development of detection algorithm is still ongoing due to the computational burden in large-scale association studies. In this paper, to deal with the intensive computing problem of detecting epistatic interactions in large-scale datasets, a self-adjusting ant colony optimization based on information entropy (IEACO) is proposed. The algorithm can automatically self-adjust the path selection strategy according to the real-time information entropy. The performance of IEACO is compared with that of ant colony optimization (ACO), AntEpiSeeker, AntMiner, and epiACO on a set of simulated datasets and a real genome-wide dataset. The results of extensive experiments show that the proposed method is superior to the other methods.


Sign in / Sign up

Export Citation Format

Share Document