Group risk assessment in failure mode and effects analysis using a hybrid probabilistic hesitant fuzzy linguistic MCDM method

2021 ◽  
pp. 116013
Author(s):  
Zhi-Chao Wang ◽  
Yan Ran ◽  
Yifan Chen ◽  
Xin Yang ◽  
Genbao Zhang
2020 ◽  
Vol 1 (1) ◽  
pp. 162-173
Author(s):  
Dinesh Kumar Kushwaha ◽  
◽  
Dilbagh Panchal ◽  
Anish Sachdeva ◽  
◽  
...  

Failure Mode Effect Analysis (FMEA) is popular and versatile approach applicable to risk assessment and safety improvement of a repairable engineering system. This method encompasses various fields such as manufacturing, healthcare, paper mill, thermal power industry, software industry, services, security etc. in terms of its application. In general, FMEA is based on Risk Priority Number (RPN) score which is found by product of probability of Occurrence (O), Severity of failure (S) and Failure Detection (D). As human judgement is approximate in nature, the accuracy of data obtained from FMEA members depend on degree of subjectivity. The subjective knowledge of members not only contains uncertainty but hesitation too which in turn, affect the results. Fuzzy FMEA considers uncertainty and vagueness of the data/ information obtained from experts. In order to take into account, the hesitation of experts and vague concept, in the present work we propose integrated framework based on Intuitionistic Fuzzy- Failure Mode Effect Analysis (IF-FMEA) and IF-Technique for Order Preference by Similarity to Ideal Solution (IF-TOPSIS) techniques to rank the listed failure causes. Failure cause Fibrizer (FR) was found to be the most critical failure cause with RPN score 0.500. IF-TOPSIS has been implemented within IF-FMEA to compare and verify ranking results obtained by both the IF based approaches. The proposed method was presented with its application for examining the risk assessment of cutting system in sugar mill industry situated in western Uttar Pradesh province of India. The result would be useful for the plant maintenance manager to fix the best maintenance schedule for improving availability of cutting system.


2018 ◽  
Vol 25 (8) ◽  
pp. 2660-2687 ◽  
Author(s):  
Sachin Kumar Mangla ◽  
Sunil Luthra ◽  
Suresh Jakhar

PurposeThe purpose of this paper is to facilitate green supply chain (GSC) managers and planners to model and access GSC risks and probable failures. This paper proposes to use the fuzzy failure mode and effects analysis (FMEA) approach for assessing the risks associated with GSC for benchmarking the performance in terms of effective GSC management adoption and sustainable production.Design/methodology/approachInitially, different failure modes are defined using FMEA analysis, and in order to decide the risk priority, the risk priority number (RPN) is determined. Such priority numbers are typically acquired from the judgment decisions of experts that could contain the element of vagueness and imperfection due to human biases, and it may lead to inaccuracy in the process of risk assessment in GSC. In this study, fuzzy logic is applied to conventional FMEA to overcome the issues in assigning RPNs. A plastic manufacturer GSC case exemplar of the proposed model is illustrated to present the authenticity of this method of risk assessment.FindingsResults indicate that the failure modes, given as improper green operating procedure, i.e. process, operations, etc. (R6), and green issues while closing the loop of GSC (R14) hold the highest RPN and FRPN scores in classical as well as fuzzy FMEA analysis.Originality/valueThe present research work attempts to propose an evaluation framework for risk assessment in GSC. This paper explores both sustainable developments and risks related to efficient management of GSC initiatives in a plastic industry supply chain context. From a managerial perspective, suggestions are also provided with respect to each failure mode.


2020 ◽  
Vol 319 ◽  
pp. 01004
Author(s):  
Voraya Wattanajitsiri ◽  
Rapee Kanchana ◽  
Surat Triwanapong ◽  
Kittipong Kimapong

The objective of this research was to study a risk assessment of the rice combine harvester using FMEA technique implementation and suggested the procedures to maintain the parts of the rice combine harvester by analyzing the causes of risk assessment of FMEA. The FMEA was also applied to specify failure causes and effects that occurred in the rice harvester. The obtained data were calculated for a risk priority number (RPN) and then sorted to be a descending order. The high RPN part was analyzed for the causes and effects and then suggested a preventive maintenance in near future. The results revealed that the highest RPN of 576 was found when a chain surface was considered and also showed the maximum risk among the considered parts in the rice combine harvester. While, the lowest RPN of 144 was found when a rice sieve part was considered but this RPN was still higher than that of 100 RPN which was required to specify the preventive maintenance.


2019 ◽  
Vol 61 (4) ◽  
pp. 214-221 ◽  
Author(s):  
Yuan Liu ◽  
Gong-Tian Shen ◽  
Zhang-Yan Zhao ◽  
Zhan-Wen Wu

2009 ◽  
Vol 21 (01) ◽  
pp. 61-70 ◽  
Author(s):  
I-Chi Chou ◽  
Hsu-Chin Hsueh ◽  
Ren-Guey Lee

This paper describes an approach for evaluating the risk of components used in the Holter. Holter is a portable device for recording patients' electrocardiogram in medicine. Holter might hurt users as a result of a bad design, and might record incorrectly when malfunction happens. To prevent risk of injury, we analyze the potential failures of the Holter based on the Failure Mode and Effects Analysis, which is a risk assessment technique. Then, we calculate the Risk Priority Number (RPN) of each failure. According to the RPN, we give two strategies for reducing the risk. One is protection, and the other is alarm. The protection system is used to prevent hazards of the Holter from incorrect operations by the user, and the alarm system is used to detect the malfunction of the Holter. The experimental results show that the safety of the Holter is improved with these two circuits.


2012 ◽  
Vol 18 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Parinaz Salati ◽  
Seyed Jozi

The ninth olefin plan of Arya Sasol Petrochemical Company (A.S.P.C.) is regarded the largest gas Olefin Unit located on Pars Special Economic Energy Zone (P.S.E.E.Z). Considering the importance of the petrochemical unit, its environmental assessment seems necessary to identify and reduce potential hazards. For this purpose, after determining the scope of the study area, identification and measurement of the environmental parameters, environmental risk assessment of the unit was carried out using Environment Failure Mode and Effect Analysis (EFMEA). Using the noted method, sources causing environmental risks were identified, rated and prioritized. Beside, the impacts of the environmental aspects derived from the unit activities as well as their consequences were also analyzed. Furthermore, the identified impacts were prioritized based on Risk Priority Number (RPN) and severity level of the consequences imposed on the affected environment. After performing statistical calculations, it was found that the environmental aspects owing the risk priority number higher than 15 have a high level of risk. Results obtained from Low Density Polyethylene Unit revealed that the highest risk belongs to the emergency vent system with risk priority number equal to 48. It is occurred due to imperfect performance of the reactor safety system leading to the emissions of ethylene gas, particles, and radioactive steam as well as air and noise pollutions. Results derived from secondary assessment of the environmental aspects, through difference in calculated RPN and activities risk levels showed that employing modern methods and risk assessment are have remarkably reduced the severity of risk and consequently detracted the damages and losses incurred on the environment.


Sign in / Sign up

Export Citation Format

Share Document