Fine-tuning SalGAN and PathGAN for extending saliency map and gaze path prediction from natural images to websites

2021 ◽  
pp. 116282
Author(s):  
Enrico Corradini ◽  
Gianluca Porcino ◽  
Alessandro Scopelliti ◽  
Domenico Ursino ◽  
Luca Virgili
2021 ◽  
Author(s):  
Akinori Minagi ◽  
Hokuto Hirano ◽  
Kazuhiro Takemoto

Abstract Transfer learning from natural images is well used in deep neural networks (DNNs) for medical image classification to achieve computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to be limited because training data — which are often required for adversarial attacks — are generally unavailable in terms of security and privacy preservation. Nevertheless, we hypothesized that adversarial attacks are also possible using natural images because pre-trained models do not change significantly after fine-tuning. We focused on three representative DNN-based medical image classification tasks (i.e., skin cancer, referable diabetic retinopathy, and pneumonia classifications) and investigated whether medical DNN models with transfer learning are vulnerable to universal adversarial perturbations (UAPs), generated using natural images. UAPs from natural images are useful for both non-targeted and targeted attacks. The performance of UAPs from natural images was significantly higher than that of random controls, although slightly lower than that of UAPs from training images. Vulnerability to UAPs from natural images was observed between different natural image datasets and between different model architectures. The use of transfer learning causes a security hole, which decreases the reliability and safety of computer-based disease diagnosis. Model training from random initialization (without transfer learning) reduced the performance of UAPs from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability of UAPs from natural images will become a remarkable security threat.


2021 ◽  
Author(s):  
Johannes Janek Daniel Singer ◽  
Katja Seeliger ◽  
Tim Christian Kietzmann ◽  
Martin N Hebart

Line drawings convey meaning with just a few strokes. Despite strong simplifications, humans can recognize objects depicted in such abstracted images without effort. To what degree do deep convolutional neural networks (CNNs) mirror this human ability to generalize to abstracted object images? While CNNs trained on natural images have been shown to exhibit poor classification performance on drawings, other work has demonstrated highly similar latent representations in the networks for abstracted and natural images. Here, we address these seemingly conflicting findings by analyzing the activation patterns of a CNN trained on natural images across a set of photos, drawings and sketches of the same objects and comparing them to human behavior. We find a highly similar representational structure across levels of visual abstraction in early and intermediate layers of the network. This similarity, however, does not translate to later stages in the network, resulting in low classification performance for drawings and sketches. We identified that texture bias in CNNs contributes to the dissimilar representational structure in late layers and the poor performance on drawings. Finally, by fine-tuning late network layers with object drawings, we show that performance can be largely restored, demonstrating the general utility of features learned on natural images in early and intermediate layers for the recognition of drawings. In conclusion, generalization to abstracted images such as drawings seems to be an emergent property of CNNs trained on natural images, which is, however, suppressed by domain-related biases that arise during later processing stages in the network.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Reza Eghdam ◽  
Reza Ebrahimpour ◽  
Iman Zabbah ◽  
Sajjad Zabbah

Local contrasts attract human attention to different areas of an image. Studies have shown that orientation, color, and intensity are some basic visual features which their contrasts attract our attention. Since these features are in different modalities, their contribution in the attraction of human attention is not easily comparable. In this study, we investigated the importance of these three features in the attraction of human attention in synthetic and natural images. Choosing 100% percent detectable contrast in each modality, we studied the competition between different features. Psychophysics results showed that, although single features can be detected easily in all trials, when features were presented simultaneously in a stimulus, orientation always attracts subject’s attention. In addition, computational results showed that orientation feature map is more informative about the pattern of human saccades in natural images. Finally, using optimization algorithms we quantified the impact of each feature map in construction of the final saliency map.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 457 ◽  
Author(s):  
Dandan Zhu ◽  
Lei Dai ◽  
Ye Luo ◽  
Guokai Zhang ◽  
Xuan Shao ◽  
...  

Previous saliency detection methods usually focused on extracting powerful discriminative features to describe images with a complex background. Recently, the generative adversarial network (GAN) has shown a great ability in feature learning for synthesizing high quality natural images. Since the GAN shows a superior feature learning ability, we present a new multi-scale adversarial feature learning (MAFL) model for image saliency detection. In particular, we build this model, which is composed of two convolutional neural network (CNN) modules: the multi-scale G-network takes natural images as inputs and generates the corresponding synthetic saliency map, and we design a novel layer in the D-network, namely a correlation layer, which is used to determine whether one image is a synthetic saliency map or ground-truth saliency map. Quantitative and qualitative comparisons on several public datasets show the superiority of our approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mohammed Alsuhaibani ◽  
Danushka Bollegala

Word embedding models have recently shown some capability to encode hierarchical information that exists in textual data. However, such models do not explicitly encode the hierarchical structure that exists among words. In this work, we propose a method to learn hierarchical word embeddings (HWEs) in a specific order to encode the hierarchical information of a knowledge base (KB) in a vector space. To learn the word embeddings, our proposed method considers not only the hypernym relations that exist between words in a KB but also contextual information in a text corpus. The experimental results on various applications, such as supervised and unsupervised hypernymy detection, graded lexical entailment prediction, hierarchical path prediction, and word reconstruction tasks, show the ability of the proposed method to encode the hierarchy. Moreover, the proposed method outperforms previously proposed methods for learning nonspecialised, hypernym-specific, and hierarchical word embeddings on multiple benchmarks.


2021 ◽  
Author(s):  
Akinori Minagi ◽  
Hokuto Hirano ◽  
Kazuhiro Takemoto

Abstract Background. Transfer learning from natural images is well used in deep neural networks (DNNs) for medical image classification to achieve computer-aided clinical diagnosis. Although the adversarial vulnerability of DNNs hinders practical applications owing to the high stakes of diagnosis, adversarial attacks are expected to be limited because training data — which are often required for adversarial attacks — are generally unavailable in terms of security and privacy preservation. Nevertheless, we hypothesized that adversarial attacks are also possible using natural images because pre-trained models do not change significantly after fine-tuning.Methods. We considered three representative DNN-based medical image classification tasks (i.e., skin cancer, referable diabetic retinopathy, and pneumonia classifications) to investigate whether medical DNN models with transfer learning are vulnerable to universal adversarial perturbations (UAPs), generated using natural images.Results. UAPs from natural images are useful for both non-targeted and targeted attacks. The performance of UAPs from natural images was significantly higher than that of random controls, although slightly lower than that of UAPs from training images. Vulnerability to UAPs from natural images was observed between different natural image datasets and between different model architectures.Conclusion. The use of transfer learning causes a security hole, which decreases the reliability and safety of computer-based disease diagnosis. Model training from random initialization (without transfer learning) reduced the performance of UAPs from natural images; however, it did not completely avoid vulnerability to UAPs. The vulnerability of UAPs from natural images will become a remarkable security threat.


ASHA Leader ◽  
2017 ◽  
Vol 22 (6) ◽  
Author(s):  
Christi Miller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document