Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells

2013 ◽  
Vol 35 (1) ◽  
pp. 39-46 ◽  
Author(s):  
Kil-Nam Kim ◽  
Ginnae Ahn ◽  
Soo-Jin Heo ◽  
Sung-Myung Kang ◽  
Min-Cheol Kang ◽  
...  
1993 ◽  
Vol 38 (3-4) ◽  
pp. C175-C177 ◽  
Author(s):  
G. P. Cricco ◽  
C. A. Davio ◽  
R. M. Bergoc ◽  
E. S. Rivera

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13093-13093 ◽  
Author(s):  
S. L. Smiley ◽  
D. O. Henry ◽  
M. K. Wong

13093 Background: Clinical studies show that LMWHs improve survival in cancer patients. There is compelling and mounting evidence that non-anticoagulation factors are at play, and that these may be contributing in a major way to improved patient outcome. Methods and Results: Dalteparin, enoxaparin, and tinzaparin were tested for their in vivo ability to inhibit tumor lines engineered for aggressive angiogenesis-driven growth. Therapeutic daily doses of drug administered the day following tumor inoculation resulted in significant angiogenesis and tumor inhibition. We previously showed that LMWHs inhibit fibroblast growth factor (FGF) -induced mitogenesis of Tumor Derived Endothelial Cells (TDECs) in a time and concentration dependent manner in vitro. We now show that this endothelial inhibition occurs through LMWHs-mediated reduction of phosphorylation and down stream signaling through ERK. The potency of LMWH was significantly reduced when TDECs were pretreated with heparinase- suggesting that the molecular target for LMWH may be the cell surface, low affinity FGF receptor system. Both our in vivo and in vitro studies demonstrate that angiogenesis and tumor inhibition are greatest for dalteparin > tinzaparin > enoxaparin. Clues to the heparin-TDECs interaction comes from tracking the real-time movement of FGF using a highly fluorescent nanocrystal bead decorated on its surface with FGF. High resolution video-microscopy shows FGF binding onto TDEC surfaces, but once heparin enters the environment, FGF detaches from the TDECs and migrates to the heparin. This ultimately results in significant TDEC growth inhibition as compared to controls. Conclusion: LMWH treatment at pharmacologic doses significantly blunts tumor growth and angiogenesis. This inhibition resides in part via heparin’s ability to sequester FGF from the low affinity receptor system on tumor endothelial cells. No significant financial relationships to disclose.


2007 ◽  
Vol 114 (2) ◽  
pp. 94-102 ◽  
Author(s):  
Ning Yu ◽  
Wei Xu ◽  
Zhenggang Jiang ◽  
Qinghua Cao ◽  
Yiwei Chu ◽  
...  

1990 ◽  
Vol 73 (2) ◽  
pp. 248-253 ◽  
Author(s):  
Alfred P. Bowles ◽  
Cooley G. Pantazis ◽  
William Wansley

✓ The authors have evaluated the antiproliferative activity of verapamil, alone or in combination with 1, 3-bis(2-chloroethyl)-1-nitrosourea (BCNU) in brain-tumor cells. These effects were studied in vitro using four human glioma cell lines and in vivo using glioblastoma multiforme cells transplanted to athymic nude mice. The results showed that verapamil when used alone produced inhibition of tumor growth; however, when verapamil was used in combination with BCNU (in vitro), significant dose-dependent suppression of proliferation occurred in all four cell lines. The in vivo results were far more dramatic. Mice treated with BCNU (25 mg/kg) plus verapamil (50 mg/kg) achieved a 200-fold decrease in tumor growth with a greater than 80% regression in tumor size. Complete cures were achieved in 80% of the mice observed for at least 50 days following the completion of therapy. These findings support the use of verapamil in overcoming drug resistance in malignant brain tumors.


Author(s):  
Yen-Chou Chen ◽  
Shing-Chuan Shen ◽  
Jyh-Ming Chow ◽  
Ching Ko ◽  
Shih-Wen Tseng

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3459-3459
Author(s):  
Richard A. Campbell ◽  
Eric Sanchez ◽  
Haiming Chen ◽  
Lauren Turker ◽  
Olivia Trac ◽  
...  

Abstract The peripheral benzodiazepine receptor (mPBR) appears to be a potential target to induce apoptosis in tumor cells. The expression of this receptor has been linked to a poor prognosis in cancer patients. PK11195 may represent a new, well-tolerated potent chemosensitizing agent that affects multiple resistance mechanisms within malignant cells. We have evaluated whether PK11195 inhibits multiple myeloma (MM) cell growth in vitro; and, furthermore, whether this drug can chemosensitize a melphalan resistant human MM tumor, LAGλ-1 (Campbell et al, International Journal of Oncology 2006), to arsenic trioxide (ATO) and melphalan using an in vivo SCID-hu model. The MM cell lines RPMI8226 and U266 were treated with varying concentrations of PK11195 (1 – 100 mM). After incubating with PK11195 for 24 hours, cell growth was measured by MTT assay. Those cells treated with PK11195 showed decreased proliferation at concentrations as low as 1 mM compared to the untreated cells. Next, we investigated the chemosensitizing effects of PK11195 using an in vivo model of human MM. To accomplish this, each immunodeficient (SCID) mouse was implanted with a 2.0 – 4.0 mm3 LAGλ-1 tumor fragment into the left superficial gluteal muscle. The tumors were allowed to grow for 14 days at which time human IgG levels were detectable in the mouse serum or when tumors became palpable (21 days) and mice were blindly assigned into treatment groups. PK11195 (10, 50 and 100 mg/kg) was administered via oral gavage once weekly when combined with melphalan and once daily five times per week when combined with ATO. Melphalan (3 mg/kg) was administered once weekly via intraperitoneal (i.p.) injection. ATO (1.25 mg/kg) was administered once daily five times per week via i.p. injection. Mice receiving the combination of PK11195 and melphalan (3 mg/kg) showed marked inhibition of tumor growth (PK11195 10 mg/kg, P = 0.03; PK11195 50 mg/kg, P = 0.02; PK11195 200 mg/kg, P < 0.01) compared to mice receiving no therapy. Animals treated with melphalan, as a single agent, did show minimal tumor growth inhibition and reduced paraprotein levels whereas mice treated with single agent PK11195 showed tumor growth similar to the control mice. Mice receiving the combination of PK11195 and low dose ATO (1.25 mg/kg) also showed inhibition of tumor growth (PK11195 200 mg/kg, P < 0.01) whereas treatment with either single agent PK11195 or ATO demonstrated growth similar to the control groups. Treatment with the highest dose of PK11195 (200 mg/kg) was not associated with any observed toxicity suggesting that high doses can be safely administered and are well tolerated. In this study, we showed PK11195 inhibits MM cell growth in vitro at very low concentrations and can chemosensitize drug resistant tumor cells in vivo at doses that have no observable toxicity. We are further evaluating PK11195 as a single agent and in combination therapy both in vitro and in vivo..


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3506-3506 ◽  
Author(s):  
Richard A. Campbell ◽  
Melinda S. Gordon ◽  
Eric Sanchez ◽  
Haiming Chen ◽  
Lauren Turker ◽  
...  

Abstract CD40 is a TNF receptor found on the cell surface of mature B cells (B lymphocytes) and most B-cell malignancies including multiple myeloma (MM). SGN-40 is a high-affinity, humanized monoclonal antibody that targets the CD40 antigen. Recently, it has been shown that SGN-40 decreases the proliferation of malignant B cells by partial agonistic signaling and effector functions in vitro. In this study, we examined the anti-MM effects of SGN-40 in vivo using a CD40+ SCID-hu murine model of human myeloma, LAGκ-1A. Each immunodeficient (SCID) mouse was implanted with a 2.0 – 4.0 mm3 LAGκ-1A tumor fragment into the left hind limb muscle. The tumor was allowed to grow for 14 days at which time human IgG levels were detectable in the mouse serum. Mice were then randomly assigned to one of four SGN-40 treatment groups (6 mice per treatment group). SGN-40 was administered via intraperitoneal injection twice per week at doses of 0.1, 0.3, 1, and 3 mg/kg. Control mice were given a control IgG antibody (3 mg/kg) using the same schedule. Mice receiving the higher doses of SGN-40 showed marked inhibition of tumor growth (0.3 mg/kg, P < 0.02; 1 mg/kg, P < 0.03; and 3 mg/kg, P < 0.04) and reduction of paraprotein levels (1 mg/kg, P < 0.05; and 3 mg/kg, P < 0.03) compared to mice receiving control antibody. At the lowest dose of SGN-40 evaluated (0.1 mg/kg) a slight inhibition of tumor growth was observable, but there was no effect on human paraprotein. Treatment with SGN-40 was not associated with any observed toxicity. Based on these data with SGN-40 monotherapy, we are currently investigating the antitumor activity of SGN-40 plus bortezomib as well as other available anti-MM agents using our in vivo SCID-hu myeloma murine model. These data for single-agent SGN-40 are encouraging and support testing SGN-40 both alone and in combination regimens to treat MM patients.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Saheed O. Afolabi ◽  
Olufunke E. Olorundare ◽  
Abiola Babatunde ◽  
Ralph M. Albrecht ◽  
Mamoru Koketsu ◽  
...  

Plant-based therapies are being explored to prevent or treat several cancer types. The antioxidant properties of Polyalthia longifolia plant are well established. In our previous work, we demonstrated the presence of cytotoxic compounds in the methanol extract of Polyalthia longifolia (MEP) with potent activity against human leukemia cells. In the present study, we evaluated the efficacy of MEP against prostate cancer (PCa) and established the molecular basis of its effect in in vitro and in vivo models. We observed that MEP treatment resulted in a significant decrease in the growth and viability of PCa cells, associated with arrest in the G1/S phase of the cell cycle. Apoptosis was confirmed as the primary mode of MEP-induced cell death through activation of the intrinsic apoptotic machinery. Proteomic and biochemical studies identified BiP as an important target of MEP with the activation of the ER stress pathway, as a potential mechanism driving MEP-induced apoptosis. The extract exhibited strong efficacy in the PCa xenograft mouse model with significant inhibition of tumor growth and reduced tumor burden. Taken together, our findings indicate that MEP-induced apoptosis in PCa cells concomitant with the activation of the ER stress pathways results in the inhibition of tumor growth, in vitro and in vivo. Our studies provide initial evidence of the efficacy of MEP against PCa and advocate for in-depth studies in other preclinical models for its possible use in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document