PK11195, a Ligand of the Peripheral Benzodiazepine Receptor, Inhibits Myeloma Cell Growth In Vitro and Chemosensitizes Myeloma Cells In Vivo in SCID-hu Models of Human Multiple Myeloma.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3459-3459
Author(s):  
Richard A. Campbell ◽  
Eric Sanchez ◽  
Haiming Chen ◽  
Lauren Turker ◽  
Olivia Trac ◽  
...  

Abstract The peripheral benzodiazepine receptor (mPBR) appears to be a potential target to induce apoptosis in tumor cells. The expression of this receptor has been linked to a poor prognosis in cancer patients. PK11195 may represent a new, well-tolerated potent chemosensitizing agent that affects multiple resistance mechanisms within malignant cells. We have evaluated whether PK11195 inhibits multiple myeloma (MM) cell growth in vitro; and, furthermore, whether this drug can chemosensitize a melphalan resistant human MM tumor, LAGλ-1 (Campbell et al, International Journal of Oncology 2006), to arsenic trioxide (ATO) and melphalan using an in vivo SCID-hu model. The MM cell lines RPMI8226 and U266 were treated with varying concentrations of PK11195 (1 – 100 mM). After incubating with PK11195 for 24 hours, cell growth was measured by MTT assay. Those cells treated with PK11195 showed decreased proliferation at concentrations as low as 1 mM compared to the untreated cells. Next, we investigated the chemosensitizing effects of PK11195 using an in vivo model of human MM. To accomplish this, each immunodeficient (SCID) mouse was implanted with a 2.0 – 4.0 mm3 LAGλ-1 tumor fragment into the left superficial gluteal muscle. The tumors were allowed to grow for 14 days at which time human IgG levels were detectable in the mouse serum or when tumors became palpable (21 days) and mice were blindly assigned into treatment groups. PK11195 (10, 50 and 100 mg/kg) was administered via oral gavage once weekly when combined with melphalan and once daily five times per week when combined with ATO. Melphalan (3 mg/kg) was administered once weekly via intraperitoneal (i.p.) injection. ATO (1.25 mg/kg) was administered once daily five times per week via i.p. injection. Mice receiving the combination of PK11195 and melphalan (3 mg/kg) showed marked inhibition of tumor growth (PK11195 10 mg/kg, P = 0.03; PK11195 50 mg/kg, P = 0.02; PK11195 200 mg/kg, P < 0.01) compared to mice receiving no therapy. Animals treated with melphalan, as a single agent, did show minimal tumor growth inhibition and reduced paraprotein levels whereas mice treated with single agent PK11195 showed tumor growth similar to the control mice. Mice receiving the combination of PK11195 and low dose ATO (1.25 mg/kg) also showed inhibition of tumor growth (PK11195 200 mg/kg, P < 0.01) whereas treatment with either single agent PK11195 or ATO demonstrated growth similar to the control groups. Treatment with the highest dose of PK11195 (200 mg/kg) was not associated with any observed toxicity suggesting that high doses can be safely administered and are well tolerated. In this study, we showed PK11195 inhibits MM cell growth in vitro at very low concentrations and can chemosensitize drug resistant tumor cells in vivo at doses that have no observable toxicity. We are further evaluating PK11195 as a single agent and in combination therapy both in vitro and in vivo..

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3506-3506 ◽  
Author(s):  
Richard A. Campbell ◽  
Melinda S. Gordon ◽  
Eric Sanchez ◽  
Haiming Chen ◽  
Lauren Turker ◽  
...  

Abstract CD40 is a TNF receptor found on the cell surface of mature B cells (B lymphocytes) and most B-cell malignancies including multiple myeloma (MM). SGN-40 is a high-affinity, humanized monoclonal antibody that targets the CD40 antigen. Recently, it has been shown that SGN-40 decreases the proliferation of malignant B cells by partial agonistic signaling and effector functions in vitro. In this study, we examined the anti-MM effects of SGN-40 in vivo using a CD40+ SCID-hu murine model of human myeloma, LAGκ-1A. Each immunodeficient (SCID) mouse was implanted with a 2.0 – 4.0 mm3 LAGκ-1A tumor fragment into the left hind limb muscle. The tumor was allowed to grow for 14 days at which time human IgG levels were detectable in the mouse serum. Mice were then randomly assigned to one of four SGN-40 treatment groups (6 mice per treatment group). SGN-40 was administered via intraperitoneal injection twice per week at doses of 0.1, 0.3, 1, and 3 mg/kg. Control mice were given a control IgG antibody (3 mg/kg) using the same schedule. Mice receiving the higher doses of SGN-40 showed marked inhibition of tumor growth (0.3 mg/kg, P < 0.02; 1 mg/kg, P < 0.03; and 3 mg/kg, P < 0.04) and reduction of paraprotein levels (1 mg/kg, P < 0.05; and 3 mg/kg, P < 0.03) compared to mice receiving control antibody. At the lowest dose of SGN-40 evaluated (0.1 mg/kg) a slight inhibition of tumor growth was observable, but there was no effect on human paraprotein. Treatment with SGN-40 was not associated with any observed toxicity. Based on these data with SGN-40 monotherapy, we are currently investigating the antitumor activity of SGN-40 plus bortezomib as well as other available anti-MM agents using our in vivo SCID-hu myeloma murine model. These data for single-agent SGN-40 are encouraging and support testing SGN-40 both alone and in combination regimens to treat MM patients.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4173-4173
Author(s):  
Pei Liang ◽  
Suk-Hang Cheng ◽  
Chi-Keung Cheng ◽  
Kin-Mang Lau ◽  
Natalie Pui Ha Chan ◽  
...  

Abstract Abstract 4173 Multiple myeloma (MM) is a B-cell derived plasma cell malignancy characterized by accumulation of clonal plasma cells in bone marrow (BM). Platelet factor 4 (PF4), a potent antiangiogenic chemokine, not only inhibits endothelial cell proliferation and migration in vitro but also inhibits solid tumor growth in vivo. Our group previously demonstrated loss of PF4 expression in patient multiple myeloma (MM) samples and MM cell lines. Here, we characterized the effects of PF4 on both MM cells and endothelial cells in the BM milieu. We found that PF4 inhibits cell growth in MM cell lines (U266 and NCI-H929) with an IC50 4μM at 96 hours by the WST-1 assay. Cell apoptosis by Annexin V-7 AAD staining showed that percentages of apoptotic cells increased from 15.6% to 16.5%, 23.6% and 39.2% for U266 cells and from 19.8% to 20.1%. 26.8% and 71.0% for NCI-H929 cells when incubated with 2, 4, and 8μM PF4, respectively. PF4 also has direct effects on endothelial cells isolated from patient's BM aspirates (MMECs). Our results showed that PF4 suppresses MMECs proliferation (IC50 8μM) and capillary-like tube formation on matrigel in a dose-dependent manner. It is known that BM endothelial cells promote MM cell growth, survival, and drug resistance in BM microenvironment. Therefore, we further examined whether the proliferation of MM cell is influenced by the presence of endothelial cells. U266 cells were cultured for 96 hours with or without MMECs, in the presence or absence of PF4. We found that adhesion of MM cell to MMECs up regulates cell proliferation (about 1.5 fold), which is markedly inhibited by PF4 (>4uM). Given the ability of PF4 to suppress MM cell growth and angiogenesis in vitro, we evaluated its tumor suppressive function in vivo. In SCID-rab mouse model, 1× 106 U266 MM cells were directly injected into the rabbit bone which was subcutaneously implanted into the NOD-SCID mice. Two weeks after injection, SCID mice were treated with various dose of PF4 (20 or 200 ng per injection, three times per week) or vehicle control by tail vein injection. ELISA assay with hIg (Lambda) showed that tumor growth in PF4-treated mice is markedly reduced by 2.5 fold compared with the control group, which is further confirmed by immunohistochemistry analysis of CD138 staining on rabbit bone section. Consistent with the in vitro results, MM cells' proliferation and angiogenesis are also significantly inhibited by PF4 in vivo, as evidenced by ki67 and CD31 staining on rabbit bone sections from treated versus control mice. Moreover, PF4 improves the survival rate of mice. The survival rate of PBS treated mice was 80% after 3 weeks and less than 30% after 12 weeks, while PF4-treated groups had 100% survival rate after 12 weeks. Taken together, our findings confirm that PF4 is a critical regulator of MM pathogenesis, which targets both MM cells and MMECs in the BM milieu in vitro and in vivo and prolongs survival in the SCID-rab mice model of human MM. These studies provide an important framework for critical clinical studies of PF4 to improve patient treatment outcome in MM. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 114-114
Author(s):  
Richard A. Campbell ◽  
Haiming Chen ◽  
Hee Jin Lee ◽  
Howard S. Yeh ◽  
Melinda S. Gordon ◽  
...  

Abstract Pleiotrophin (PTN) is a heparin-binding growth factor that binds CD138 and stimulates angiogenesis, tumor growth and metastasis in some solid tumors. Recently, we have shown that this factor is highly produced by multiple myeloma (MM) cell lines including RPMI8226 and U266 and fresh malignant plasma cells, and is secreted into the culture medium following short-term culture of bone marrow from MM patients. We investigated the effects of PTN on MM growth in vitro and in vivo using a SCID-hu murine MM model. We determined the anti-proliferative effects of suppressing PTN by cloning a whole PTN sense or anti-sense cDNA construct containing the green fluorescent protein (GFP) gene into the MM cell lines RPMI8226 and U266. Cells transduced with sense PTN showed markedly increased proliferation compared to cells transduced with vector alone whereas the anti-sense-containing MM cells showed reduced cell numbers. In addition, we treated RPMI8226 and U266 cells with a polyclonal anti-PTN antibody and evaluated its effect on MM growth. These cells were cultured for 48 hours in the presence of the anti-PTN antibody at a concentration of 100 micrograms/ml or a control antibody, and effects on cell growth assessed with an MTT assay. Marked anti-MM effects were observed with the anti-PTN antibody compared to the control antibody in both cell lines [RPMI8226 (p &lt; 0.01) and U266 (p &lt; 0.001)]. In order to further define the importance of PTN in the growth of MM in a more clinically relevant in vivo setting, we determined whether this polyclonal anti-PTN antibody could suppress tumor growth and human paraprotein secretion using our SCID-hu murine model of human myeloma LAGλ-1. LAGλ-1 has been previously shown by our group to produce large amounts of PTN as measured in mouse serum by ELISA and by RT- PCR analysis on freshly isolated LAGλ-1 tumor cells. Thirty SCID mice (n = 5 mice/group) were implanted with a 0.4 – 0.6 cm3 LAGλ-1 tumor fragment into the left hind limb muscle. Fourteen days following implantation, mice were randomized into treatment groups, and received treatment intraperitoneally (IP) with anti-PTN antibody at doses of 0.1, 0.3, 1.0, 3.0 or 10 mg/kg or vehicle alone twice weekly. Mice receiving anti-PTN antibody at the highest doses (3.0 and 10 mg/kg) showed marked inhibition of tumor growth [3.0 mg/kg (p &lt; 0.03), 10 mg/kg (p &lt; 0.008)] as well as decreases in levels of human paraprotein [3.0 mg/kg (p &lt; 0.004), 10 mg/kg (p &lt; 0.003)]. Notably, immunohistochemical staining with an anti-CD138 antibody showed a marked reduction in cells with CD138 positivity in the LAGλ-1 tumors from animals treated with anti-PTN antibody compared to mice treated with vehicle alone. These in vitro and in vivo results demonstrate that PTN may be a potential new target for the treatment of MM. The effects of this therapy on angiogenesis and cell signaling are currently under investigation.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3478-3478
Author(s):  
Dale Wright ◽  
Shannon L. Winski ◽  
Deborah Anderson ◽  
Patrice Lee ◽  
Mark Munson ◽  
...  

Abstract Multiple myeloma (MM) is characterized by the expansion of malignant plasma cells within the bone marrow. Their growth, survival, and migration are mediated in part via cytokines. Interleukin 6 (IL-6) is necessary for sustaining the in vitro growth of many MM cell lines and enhancing the proliferation of explanted human myeloma cells. The mitogen-activated protein kinase family member, p38, is activated by cytokines and growth factors and plays a significant role in inflammatory diseases. However, its role in the pathogenesis of multiple myeloma is poorly understood. Specific p38 inhibitors inhibit paracrine MM cell growth which is associated with IL-6 and VEGF secretion from bone marrow stromal cells (BMSCs). Furthermore, p38 inhibition blocks TNF-alpha-induced IL-6 secretion in BMSCs, thereby further inhibiting MM cell growth and survival. Although these data suggest an important role for p38 in MM, the direct effects of p38 inhibiton on MM has not been extensively explored. Therefore, we investigated the effects of p38 inhibition on in vitro and in vivo IL-6 production and MM cell growth in vivo after lipopolysaccaride (LPS) stimulation. LPS has been shown to induce various cytokines, including TNF-alpha and IL-6, via the p38 pathway. ARRY-797, an orally bioavailable, small molecule inhibitor of p38 directly inhibited LPS-induced IL-6 production from RPMI-8226 (IC50 = 100 pM) in vitro. In SCID-beige mice, LPS (3 μg/kg) induced IL-6 (7897 ± 827 pg/mL) and TNF-alpha (1922 ± 282 pg/mL) after 2 hours and these cytokines were inhibited by oral administration of ARRY-797 (30 mg/kg) by 91% and 95%, respectively. In MM xenograft models, ARRY-797 (30 mg/kg, BID, PO) inhibited RPMI 8226 tumor growth by 72% as a single agent and by 56% when LPS was administered to stimulate growth in vivo. In addition, ARRY-797 inhibited LPS-induced phosphorylation of p38 in RPMI-8226 xenografts. Together, these data support a role for p38 in IL-6-mediated growth of multiple myelomas. To our knowledge, ARRY-797 is the first small molecule p38 inhibitor to demonstrate single agent activity in a MM xenograft model and it has been advanced into preclinical development.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3164-3164
Author(s):  
Shirong Li ◽  
Jing Fu ◽  
Jordan M. Schecter ◽  
Caisheng Lu ◽  
Markus Y. Mapara ◽  
...  

Abstract Introduction Overexpression and/or activation of eukaryotic initiation factor 4E (eIF4E) is critical for oncogenic protein synthesis. Mutations in genes related to mRNA translation are involved in the pathogenesis of multiple myeloma (Chapman, Lawrence et al. 2011). Recently, we found that MM cells express high levels of eIF4E protein compared to normal plasma cells and overexpression of eIF4E induces transcription factors such as c-myc critical for the growth of multiple myeloma cells (Li, Fu et al. 2011,2012). The understanding of the mechanisms that control protein synthesis is an emerging new research area in MM with significant potential for developing innovative therapies. Here we show the critical role of eIF4E driven protein synthesis by using an inducible knockdown system to silence eIF4E gene expression and confirm the critical role of eIF4E in multiple myeloma growth in vivo and in vitro. Methods and Results We stably infected U266, RPMI-8226, IM-9 and MM.1S cells with a robust inducible single-lentiviral knockdown vector pLKO-Tet-On containing either control non-targeting shRNA or eIF4E targeting shRNA sequences. Doxycycline-induced eIF4E shRNA expression resulted in significant decrease of eIF4E mRNA and protein in eIF4E-shRNA but not the control shRNA infected MM cells. To determine the effects of eIF4E knockdown on MM cell growth and viability, stably transfected cell lines were grown in the presence or absence of doxycycline. Silencing of eIF4E by doxycycline induction of eIF4E shRNA in RPMI-8226 cells significantly inhibited (>72%,P<0.01) cell growth accompanied by a decrease of c-myc, cyclin D1, C/EBP beta and IRF4 all critical for myeloma cell growth. Cell cycle analysis revealed increased cells population in G0/G1 phase (62% vs 80%) in doxycycline-induced eIF4E shRNA cells with a significant reduction (P<0.001) of clonogenic tumor growth reflected by a decrease in colony numbers (27.6 ± 4.2 vs 5.3 ± 3.4) and size. To determine the role of high expression of eIF4E in MM tumor growth in vivo, we generated subcutaneous MM xenografts in severe combined immunodeficient x beige (SCID/bg) mice using the inducible U266-Tet-CT-shRNA and U266-Tet-eIF4E-shRNA cells. In contrast to vehicle or doxycycline-treated control shRNA tumors, doxycycline treated animals bearing U266-Tet-eIF4E-shRNA xenografts showed a significant inhibition (P<0.001) of tumor growth by 80% after 21 days. The transient inhibition of tumor growth correlated with the transient doxycycline-induced eIF4E knockdown further confirming the critical role of eIF4E. Immunohistochemical staining of tumors confirmed the decreased of eIF4E expression in doxycycline-treated mice bearing U266-Tet-eIF4E-shRNA tumors compared with tumors of vehicle-treated or non-doxycyclin treated mice. Conclusion Here we show that eIF4E, a key player in the translational machinery, promotes multiple myeloma cell growth. We found that high eIF4E expression is indispensable for the growth of MM cells both in vitro and in vivo. Silencing of eIF4E decreases protein expression of a subset of transcripts encoding regulators of the cell cycle and proliferation, and resulted in tumor inhibition. Our study indicated that targeting transcriptional initiating factor eIF4E may represent a novel therapeutic strategy for MM treatment. Disclosures: Schecter: Seattle Genetics: Honoraria, Research Funding. Lentzsch:Celgene: Research Funding.


Author(s):  
Yu-bo Zhou ◽  
Yang-ming Zhang ◽  
Hong-hui Huang ◽  
Li-jing Shen ◽  
Xiao-feng Han ◽  
...  

AbstractHDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%–35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1844-1844
Author(s):  
John Richards ◽  
Myriam N Bouchlaka ◽  
Robyn J Puro ◽  
Ben J Capoccia ◽  
Ronald R Hiebsch ◽  
...  

AO-176 is a highly differentiated, humanized anti-CD47 IgG2 antibody that is unique among agents in this class of checkpoint inhibitors. AO-176 works by blocking the "don't eat me" signal, the standard mechanism of anti-CD47 antibodies, but also by directly killing tumor cells. Importantly, AO-176 binds preferentially to tumor cells, compared to normal cells, and binds even more potently to tumors in their acidic microenvironment (low pH). Hematological neoplasms are the fourth most frequently diagnosed cancers in both men and women and account for approximately 10% of all cancers. Here we describe AO-176, a highly differentiated anti-CD47 antibody that potently targets hematologic cancers in vitro and in vivo. As a single agent, AO-176 not only promotes phagocytosis (15-45%, EC50 = 0.33-4.1 µg/ml) of hematologic tumor cell lines (acute myeloid leukemia, non-Hodgkin's lymphoma, multiple myeloma, and T cell leukemia) but also directly targets and kills tumor cells (18-46% Annexin V positivity, EC50 = 0.63-10 µg/ml) in a non-ADCC manner. In combination with agents targeting CD20 (rituximab) or CD38 (daratumumab), AO-176 mediates enhanced phagocytosis of lymphoma and multiple myeloma cell lines, respectively. In vivo, AO-176 mediates potent monotherapy tumor growth inhibition of hematologic tumors including Raji B cell lymphoma and RPMI-8226 multiple myeloma xenograft models in a dose-dependent manner. Concomitant with tumor growth inhibition, immune cell infiltrates were observed with elevated numbers of macrophage and dendritic cells, along with increased pro-inflammatory cytokine levels in AO-176 treated animals. When combined with bortezomib, AO-176 was able to elicit complete tumor regression (100% CR in 10/10 animals treated with either 10 or 25 mg/kg AO-176 + 1 mg/kg bortezomib) with no detectable tumor out to 100 days at study termination. Overall survival was also greatly improved following combination therapy compared to animals treated with bortezomib or AO-176 alone. These data show that AO-176 exhibits promising monotherapy and combination therapy activity, both in vitro and in vivo, against hematologic cancers. These findings also add to the previously reported anti-tumor efficacy exhibited by AO-176 in solid tumor xenografts representing ovarian, gastric and breast cancer. With AO-176's highly differentiated MOA and binding characteristics, it may have the potential to improve upon the safety and efficacy profiles relative to other agents in this class. AO-176 is currently being evaluated in a Phase 1 clinical trial (NCT03834948) for the treatment of patients with select solid tumors. Disclosures Richards: Arch Oncology Inc.: Employment, Equity Ownership, Other: Salary. Bouchlaka:Arch Oncology Inc.: Consultancy, Equity Ownership. Puro:Arch Oncology Inc.: Employment, Equity Ownership. Capoccia:Arch Oncology Inc.: Employment, Equity Ownership. Hiebsch:Arch Oncology Inc.: Employment, Equity Ownership. Donio:Arch Oncology Inc.: Employment, Equity Ownership. Wilson:Arch Oncology Inc.: Employment, Equity Ownership. Chakraborty:Arch Oncology Inc.: Employment, Equity Ownership. Sung:Arch Oncology Inc.: Employment, Equity Ownership. Pereira:Arch Oncology Inc.: Employment, Equity Ownership.


Blood ◽  
2009 ◽  
Vol 114 (2) ◽  
pp. 371-379 ◽  
Author(s):  
Mariateresa Fulciniti ◽  
Pierfrancesco Tassone ◽  
Teru Hideshima ◽  
Sonia Vallet ◽  
Puru Nanjappa ◽  
...  

Abstract Decreased activity of osteoblasts (OBs) contributes to osteolytic lesions in multiple myeloma (MM). The production of the soluble Wnt inhibitor Dickkopf-1 (DKK1) by MM cells inhibits OB activity, and its serum level correlates with focal bone lesions in MM. Therefore, we have evaluated bone anabolic effects of a DKK1 neutralizing antibody (BHQ880) in MM. In vitro BHQ880 increased OB differentiation, neutralized the negative effect of MM cells on osteoblastogenesis, and reduced IL-6 secretion. In a severe combined immunodeficiency (SCID)–hu murine model of human MM, BHQ880 treatment led to a significant increase in OB number, serum human osteocalcin level, and trabecular bone. Although BHQ880 had no direct effect on MM cell growth, it significantly inhibited growth of MM cells in the presence of bone marrow stromal cells (BMSCs) in vitro. This effect was associated with inhibition of BMSC/MM cell adhesion and production of IL-6. In addition, BHQ880 up-regulated β-catenin level while down-regulating nuclear factor-κB (NF-κB) activity in BMSC. Interestingly, we also observed in vivo inhibition of MM cell growth by BHQ880 treatment in the SCID-hu murine model. These results confirm DKK1 as an important therapeutic target in myeloma and provide the rationale for clinical evaluation of BHQ880 to improve bone disease and to inhibit MM growth.


Blood ◽  
2008 ◽  
Vol 111 (3) ◽  
pp. 1654-1664 ◽  
Author(s):  
Dharminder Chauhan ◽  
Ajita Singh ◽  
Mohan Brahmandam ◽  
Klaus Podar ◽  
Teru Hideshima ◽  
...  

AbstractOur recent study demonstrated that a novel proteasome inhibitor NPI-0052 triggers apoptosis in multiple myeloma (MM) cells, and importantly, that is distinct from bortezomib (Velcade) in its chemical structure, effects on proteasome activities, and mechanisms of action. Here, we demonstrate that combining NPI-0052 and bortezomb induces synergistic anti-MM activity both in vitro using MM cell lines or patient CD138+ MM cells and in vivo in a human plasmacytoma xenograft mouse model. NPI-0052 plus bortezomib–induced synergistic apoptosis is associated with: (1) activation of caspase-8, caspase-9, caspase-3, and PARP; (2) induction of endoplasmic reticulum (ER) stress response and JNK; (3) inhibition of migration of MM cells and angiogenesis; (4) suppression of chymotrypsin-like (CT-L), caspase-like (C-L), and trypsin-like (T-L) proteolytic activities; and (5) blockade of NF-κB signaling. Studies in a xenograft model show that low dose combination of NPI-0052 and bortezomib is well tolerated and triggers synergistic inhibition of tumor growth and CT-L, C-L, and T-L proteasome activities in tumor cells. Immununostaining of MM tumors from NPI-0052 plus bortezomib–treated mice showed growth inhibition, apoptosis, and a decrease in associated angiogenesis. Taken together, our study provides the preclinical rationale for clinical protocols evaluating bortezomib together with NPI-0052 to improve patient outcome in MM.


Sign in / Sign up

Export Citation Format

Share Document