Enhanced pyrene degradation by a biosurfactant producing Acinetobacter baumannii BJ5: Growth kinetics, toxicity and substrate inhibition studies

2020 ◽  
Vol 19 ◽  
pp. 100804 ◽  
Author(s):  
Bulbul Gupta ◽  
Sanjeev Puri ◽  
Indu Shekhar Thakur ◽  
Jaspreet Kaur
1986 ◽  
Vol 233 (3) ◽  
pp. 669-676 ◽  
Author(s):  
W L Gitomer ◽  
K F Tipton

Histamine N-methyltransferase (EC 2.1.1.8) was purified 1100-fold from ox brain. The native enzyme has an Mr of 34800 +/- 2400 as measured by gel filtration on Sephadex G-100. The enzyme is highly specific for histamine. It does not methylate noradrenaline, adrenaline, DL-3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxytyramine or imidazole-4-acetic acid. Unlike the enzyme from rat and mouse brain, ox brain histamine N-methyltransferase did not exhibit substrate inhibition by histamine. Initial rate and product inhibition studies were consistent with an ordered steady-state mechanism with S-adenosylmethionine being the first substrate to bind to the enzyme and N-methylhistamine being the first product to dissociate.


1983 ◽  
Vol 215 (3) ◽  
pp. 669-676 ◽  
Author(s):  
R L Pajula

A kinetic analysis including initial-velocity and product-inhibition studies were performed with spermine synthase purified from bovine brain. The enzyme activity was assayed in the presence of 5′-methylthioadenosine phosphorylase as an auxiliary enzyme to prevent the accumulation of the inhibitory product, 5′-methylthioadenosine, and thus to obtain linearity of the reaction with time. Initial-velocity studies gave intersecting or converging linear double-reciprocal plots. No substrate inhibition by decarboxylated S-adenosylmethionine was observed at concentrations up to 0.4 mM. Apparent Michaelis constants were 60 microM for spermidine and 0.1 microM for decarboxylated S-adenosylmethionine. Spermine was a competitive product inhibitor with respect to decarboxylated S-adenosylmethionine, but a mixed one with respect to the other substrate, spermidine. 5′-Methylthioadenosine showed a mixed inhibition with both substrates, predominantly competitive with respect to decarboxylated S-adenosylmethionine and predominantly uncompetitive with respect to spermidine. The observed kinetic and inhibition patterns are consistent with a compulsory-order mechanism, where both substrates add to the enzyme before products can be released.


2013 ◽  
Vol 57 (10) ◽  
pp. 5120-5121 ◽  
Author(s):  
Sami Hraiech ◽  
Antoine Roch ◽  
Hubert Lepidi ◽  
Thérèse Atieh ◽  
Gilles Audoly ◽  
...  

ABSTRACTWe compared the fitness and lung pathogenicity of two isogenic clinical isolates ofAcinetobacter baumannii, one resistant (ABCR) and the other susceptible (ABCS) to colistin.In vitro, ABCR exhibited slower growth kinetics than ABCS. In a rat model of pneumonia, ABCR was associated with less pronounced signs of infection (lung bacterial count, systemic dissemination, and lung damage) and a better outcome (ABCR and ABCS mortality rates, 20 and 50%, respectively [P= 0.03]).


2011 ◽  
Vol 392 (12) ◽  
pp. 1113-1122 ◽  
Author(s):  
Prakash Saudagar ◽  
Vikash Kumar Dubey

Abstract Trypanothione synthetase, a validated drug target, synthesizes trypanothione from glutathione and spermidine. Here we report the gene cloning, expression, characterization and inhibition studies of trypanothione synthetase from Leishmania donovani (LdTryS). The purified recombinant LdTryS enzyme obeyed Michaelis-Menten kinetics. High substrate inhibition was observed with glutathione (Km=33.24 μm, kcat=1.3 s-1, Ki=866 μm). The enzyme shows simple hyperbolic kinetics with fixed glutathione concentration and with other substrates limiting Km values for Mg. ATP and spermidine of 14.2 μm and 139.6 μm, respectively. LdTryS was also screened for inhibitors. Tomatine, conessine, uvaol and betulin were identified as inhibitors of the enzyme and were tested for leishmanicidal activity. Finally, the effect of LdTryS inhibitors on redox homeostasis of the parasite gives a broader picture of their action against leishmaniasis.


1990 ◽  
Vol 267 (1) ◽  
pp. 51-58 ◽  
Author(s):  
S H Chiou ◽  
H J Lee ◽  
G G Chang

Biochemical characterization and kinetic analysis of epsilon-crystallin from the lenses of common ducks were undertaken to elucidate the enzyme mechanism of this unique crystallin with lactate dehydrogenase (LDH) activity. Despite the structural similarities between epsilon-crystallin and chicken heart LDH, differences in charge and kinetic properties were revealed by isoenzyme electrophoresis and kinetic studies. Bi-substrate kinetic analysis examined by initial-velocity and product-inhibition studies suggested a compulsory ordered Bi Bi sequential mechanism with NADH as the leading substrate followed by pyruvate. The products were released in the order L-lactate and NAD+. The catalysed reaction is shown to have a higher rate in the formation of L-lactate and NAD+. Substrate inhibition was observed at high concentrations of pyruvate and L-lactate for the forward and reverse reactions respectively. The substrate inhibition was presumably due to the formation of epsilon-crystallin-NAD(+)-pyruvate or epsilon-crystallin-NADH-L-lactate abortive ternary complexes, as suggested by the product-inhibition studies. The significance and the interrelationship of duck epsilon-crystallin with other well-known LDHs are discussed with special regard to its role as a structural protein with some enzymic function in lens metabolism.


Sign in / Sign up

Export Citation Format

Share Document