The excreted β-cyclopiazonate oxidocyclase isoenzymes from Penicillium cyclopium—III. Evidence for a ping-pong BI-BI mechanism from substrate inhibition studies

1979 ◽  
Vol 10 (1) ◽  
pp. 61-65 ◽  
Author(s):  
J.C. Schabort ◽  
M. Marx
1976 ◽  
Vol 22 (4) ◽  
pp. 417-421 ◽  
Author(s):  
J H Stromme ◽  
L Theodorsen

Abstract Gamma-glutamyltransferase activity in serum is shown to be competitively inhibited by the two substrates gamma-glutamyl-4-nitroanilide and glycylglycine. Awareness of this is of importance when one is choosing final reaction conditions for the assay of the enzyme. Gamma-glutamyltransferase probably acts by a "ping-pong bi-bi" kinetic mechanism, which fits with the double competitive substrate inhibition demonstrated. The product, 4-nitro-aniline, appears to be an uncompetitive dead-end inhibitor of both substrates. Various amino acids, particularly glycine and L-alanine, inhibit the enzyme. Their inhibition patterns are uncompetitive with glycylglycine and competitive with gamma-glutamyl-4-nitroanilide. On the basis of the present and other studies, the Scandinavian Society for Clinical Chemistry and Clinical Physiology is going to recommend for routine use a gamma-glutamyltransferase method in which the final concentrations of gamma-glutamyl-4-nitroanilide and glycylglycine are 4 and 75 mmol/liter, respectively.


1986 ◽  
Vol 233 (3) ◽  
pp. 669-676 ◽  
Author(s):  
W L Gitomer ◽  
K F Tipton

Histamine N-methyltransferase (EC 2.1.1.8) was purified 1100-fold from ox brain. The native enzyme has an Mr of 34800 +/- 2400 as measured by gel filtration on Sephadex G-100. The enzyme is highly specific for histamine. It does not methylate noradrenaline, adrenaline, DL-3,4-dihydroxymandelic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxytyramine or imidazole-4-acetic acid. Unlike the enzyme from rat and mouse brain, ox brain histamine N-methyltransferase did not exhibit substrate inhibition by histamine. Initial rate and product inhibition studies were consistent with an ordered steady-state mechanism with S-adenosylmethionine being the first substrate to bind to the enzyme and N-methylhistamine being the first product to dissociate.


1974 ◽  
Vol 139 (1) ◽  
pp. 109-121 ◽  
Author(s):  
B. Middleton

1. Cytoplasmic acetoacetyl-CoA thiolase was highly purified in good yield from rat liver extracts. 2. Mg2+ inhibits the rate of acetoacetyl-CoA thiolysis but not the rate of synthesis of acetoacetyl-CoA. Measurement of the velocity of thiolysis at varying Mg2+ but fixed acetoacetyl-CoA concentrations gave evidence that the keto form of acetoacetyl-CoA is the true substrate. 3. Linear reciprocal plots of velocity of acetoacetyl-CoA synthesis against acetyl-CoA concentration in the presence or absence of desulpho-CoA (a competitive inhibitor) indicate that the kinetic mechanism is of the Ping Pong (Cleland, 1963) type involving an acetyl-enzyme covalent intermediate. In the presence of CoA the reciprocal plots are non-linear, becoming second order in acetyl-CoA (the Hill plot shows a slope of 1.7), but here this does not imply co-operative phenomena. 4. In the direction of acetoacetyl-CoA thiolysis CoA is a substrate inhibitor, competing with acetoacetyl-CoA, with a Ki of 67μm. Linear reciprocal plots of initial velocity against concentration of mixtures of acetoacetyl-CoA plus CoA confirmed the Ping Pong mechanism for acetoacetyl-CoA thiolysis. This method of investigation also enabled the determination of all the kinetic constants without complication by substrate inhibition. When saturated with substrate the rate of acetoacetyl-CoA synthesis is 0.055 times the rate of acetoacetyl-CoA thiolysis. 5. Acetoacetyl-CoA thiolase was extremely susceptible to inhibition by an excess of iodoacetamide, but this inhibition was completely abolished after preincubation of the enzyme with a molar excess of acetoacetyl-CoA. This result was in keeping with the existence of an acetyl-enzyme. Acetyl-CoA, in whose presence the overall reaction could proceed, gave poor protection, presumably because of the continuous turnover of acetyl-enzyme in this case. 6. The kinetic mechanism of cytoplasmic thiolase is discussed in terms of its proposed role in steroid biosynthesis.


2020 ◽  
Vol 39 (2) ◽  
pp. 197
Author(s):  
Milica Milan Svetozarević ◽  
Nataša Šekuljica ◽  
Zorica Knežević-Jugović ◽  
Dušan Mijin

As water contamination emerges as a serious threat to the environment, ventures for cleaner and sustainable solutions are continuously being developed. The present study investigates the ability of crude peroxidase extract from soybean seeds to degrade the anthraquinone dye Acid Violet 109. The influence of the essential parameters pH, dye concentration, hydrogen peroxide dosage, and temperature were inspected. The enzyme had 81.9 % biodegradation at pH 4 in 30 min with 0.1 U peroxidase, 40 mg/l dye concentration, and 1 mM hydrogen peroxide. Considering that substrate concentration can cause reaction inhibition, a kinetic study was performed. Kinetic data fitting using bisubstrate kinetics with a substrate inhibition model revealed the high inhibitory effect of the dye, which was confirmed by the inhibition constant, 7.123·10–5 mM. Alongside the inhibition constant values, the Ping-Pong Bi-Bi model gave the maximum rates 15.788 and 14.321 mM/min for hydrogen peroxide and dye inhibition, respectively.


1994 ◽  
Vol 304 (3) ◽  
pp. 945-949 ◽  
Author(s):  
M Kelley ◽  
D A Vessey

The reaction of cholic acid, CoA and ATP to yield cholyl-CoA was investigated by kinetic analysis of the reaction as catalysed by guinea pig liver microsomes. The enzyme has an absolute requirement for divalent cation for activity so all kinetic analyses were carried out in excess Mn2+. A trisubstrate kinetic analysis was conducted by varying, one at a time ATP cholate and CoA. Both ATP and cholate gave parallel double reciprocal plots versus CoA, which indicates a ping-pong mechanism with either pyrophosphate or AMP leaving prior to the binding of CoA. Addition of pyrophosphate to the assays changed the parallel plots to intersecting ones; addition of AMP did not. This indicates that pyrophosphate is the first product. The end-product, AMP, was a competitive inhibitor versus ATP, as was cholyl-CoA at saturating concentrations of cholate. Both AMP and cholyl-CoA were uncompetitive inhibitors versus CoA. Based on this information, it was concluded that the reaction follows a bi uni uni bi ping-pong mechanism with ATP binding first, and with the release of the final products, AMP and cholyl-CoA, being random. CoA showed substrate inhibition at high but non-saturating concentrations and this inhibition was competitive versus ATP, which is consistent with the predicted ping-pong mechanism. The ability of cholyl-CoA, but not cholate or CoA, to bind with high affinity to the free enzyme was suggestive of a high affinity of the enzyme for the thioester link.


1983 ◽  
Vol 215 (3) ◽  
pp. 669-676 ◽  
Author(s):  
R L Pajula

A kinetic analysis including initial-velocity and product-inhibition studies were performed with spermine synthase purified from bovine brain. The enzyme activity was assayed in the presence of 5′-methylthioadenosine phosphorylase as an auxiliary enzyme to prevent the accumulation of the inhibitory product, 5′-methylthioadenosine, and thus to obtain linearity of the reaction with time. Initial-velocity studies gave intersecting or converging linear double-reciprocal plots. No substrate inhibition by decarboxylated S-adenosylmethionine was observed at concentrations up to 0.4 mM. Apparent Michaelis constants were 60 microM for spermidine and 0.1 microM for decarboxylated S-adenosylmethionine. Spermine was a competitive product inhibitor with respect to decarboxylated S-adenosylmethionine, but a mixed one with respect to the other substrate, spermidine. 5′-Methylthioadenosine showed a mixed inhibition with both substrates, predominantly competitive with respect to decarboxylated S-adenosylmethionine and predominantly uncompetitive with respect to spermidine. The observed kinetic and inhibition patterns are consistent with a compulsory-order mechanism, where both substrates add to the enzyme before products can be released.


1985 ◽  
Vol 227 (2) ◽  
pp. 591-599 ◽  
Author(s):  
D M Lowe ◽  
P K Tubbs

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (EC 4.1.3.5) was purified to homogeneity from ox liver and obtained essentially free from acetoacetyl-CoA thiolase activity. The purification procedure included substrate elution from cellulose phosphate and chromatofocusing. The relative molecular mas was about 100 000 and S20,w0 was 6.36S. The enzyme appears to be a dimer of identical subunits (Mr 47 900). The Km for acetoacetyl-CoA is extremely low (less than 0.5 microM), and acetoacetyl-CoA (Acac-CoA) gives marked substrate inhibition (KiAcac-CoA = 3.5 microM) that is competitive with respect to acetyl-CoA. Both CoA and DL-3-hydroxy-3-methylglutaryl-CoA give mixed product inhibition with respect to acetyl-CoA, which is compatible with a Ping Pong mechanism in which both products can form kinetically significant complexes with two forms of the enzyme. The two forms are most likely to be free enzyme and an acetyl-enzyme intermediate.


2001 ◽  
Vol 357 (1) ◽  
pp. 283-288 ◽  
Author(s):  
Donald A. VESSEY ◽  
Michael KELLEY

The XL-I form of xenobiotic/medium-chain fatty acid:CoA ligase was purified to apparent homogeneity from bovine liver mitochondria and used to determine the reaction mechanism. A tersubstrate kinetic analysis was conducted by varying the concentrations of ATP, benzoate and CoA in turn. Both ATP and benzoate gave parallel double-reciprocal plots against CoA, which indicates a Ping Pong mechanism, with either pyrophosphate or AMP leaving before the binding of CoA. Addition of pyrophosphate to the assays changed the plots from parallel to intersecting; addition of AMP did not. This indicates that pyrophosphate is the product that leaves before binding of CoA. Based on end-product inhibition studies, it was concluded that the reaction follows a Bi Uni Uni Bi Ping Pong mechanism, with ATP binding first, followed in order by benzoate binding, pyrophosphate release, CoA binding, benzoyl-CoA release and AMP release. A similar mechanism was obtained when the ligase was examined with butyrate as substrate. However, butyrate activation was characterized by a much higher affinity for CoA. This is attributed to steric factors resulting from the bulkier nature of the benzoate molecule. Also, with butyrate there is a bivalent cation activation distinct from that associated with binding to ATP. This activation by excess Mg2+ results in non-linear plots of 1/v against 1/[ATP] for butyrate unless the concentrations of Mg2+ and ATP are varied together.


Sign in / Sign up

Export Citation Format

Share Document