Simultaneous adsorption of phosphate and zinc by lanthanum modified zeolite

2021 ◽  
Vol 24 ◽  
pp. 101906
Author(s):  
Zhe Wang ◽  
Wen Li ◽  
Jun Zhu ◽  
Dongqi Wang ◽  
Haiyu Meng ◽  
...  
2015 ◽  
Vol 2 (6(74)) ◽  
pp. 34
Author(s):  
Svitlana Prymyskaya ◽  
Yuri Beznosyk ◽  
Wladimir Reschetilowski

2017 ◽  
Vol 16 (4) ◽  
pp. 829-836
Author(s):  
Florica Manea ◽  
Magdalena Ardelean ◽  
Aniela Pop ◽  
Rodica Pode ◽  
Joop Schoonman

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2269-2272 ◽  
Author(s):  
Š Cerjan-Stefanovic ◽  
M. Kaštelan-Macan ◽  
T. Filipan

Isomorphous substitution of phosphorus into a natural zeolite affords the possibility to change the overall framework charge from negative to positive. The substances so created should be used for purification of waste waters. The work describes the preparation of phosphated zeolite, their characterisation and examples of their anion exchange of NO3 on observed in deionized water, drinking water and in the solution containing varying amounts of nitrate.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2518
Author(s):  
Dorota Kołodyńska ◽  
Yongming Ju ◽  
Małgorzata Franus ◽  
Wojciech Franus

The possibility of application of chitosan-modified zeolite as sorbent for Cu(II), Zn(II), Mn(II), and Fe(III) ions and their mixtures in the presence of N-(1,2-dicarboxyethyl)-D,L-aspartic acid, IDHA) under different experimental conditions were investigated. Chitosan-modified zeolite belongs to the group of biodegradable complexing agents used in fertilizer production. NaP1CS as a carrier forms a barrier to the spontaneous release of the fertilizer into soil. The obtained materials were characterized by Fourier transform infrared spectroscopy (FTIR); surface area determination (ASAP); scanning electron microscopy (SEM-EDS); X-ray fluorescence (XRF); X-ray diffraction (XRD); and carbon, hydrogen, and nitrogen (CHN), as well as thermogravimetric (TGA) methods. The concentrations of Cu(II), Zn(II), Mn(II), and Fe(III) complexes with IDHA varied from 5–20 mg/dm3 for Cu(II), 10–40 mg/dm3 for Fe(III), 20–80 mg/dm3 for Mn(II), and 10–40 mg/dm3 for Zn(II), respectively; pH value (3–6), time (1–120 min), and temperature (293–333 K) on the sorption efficiency were tested. The Langmuir, Freundlich, Dubinin–Radushkevich, and Temkin adsorption models were applied to describe experimental data. The pH 5 proved to be appropriate for adsorption. The pseudo-second order and Langmuir models were consistent with the experimental data. The thermodynamic parameters indicate that adsorption is spontaneous and endothermic. The highest desorption percentage was achieved using the HCl solution, therefore, proving that method can be used to design slow-release fertilizers.


Sign in / Sign up

Export Citation Format

Share Document