scholarly journals Improved soil structural stability under no-tillage is related to increased soil carbon in rice paddies: Evidence from literature review and field experiment

Author(s):  
Jian-Ying Qi ◽  
Shou-Wei Han ◽  
Bai-Jian Lin ◽  
Xiao-Ping Xiao ◽  
Johannes L. Jensen ◽  
...  
2014 ◽  
Vol 190 ◽  
pp. 52-59 ◽  
Author(s):  
Joice Mari Assmann ◽  
Ibanor Anghinoni ◽  
Amanda Posselt Martins ◽  
Sérgio Ely Valadão Gigante de Andra Costa ◽  
Diego Cecagno ◽  
...  

2020 ◽  
Vol 28 ◽  
pp. 78-88
Author(s):  
Bruno César Góes ◽  
Willian Aparecido Leoti Zanetti ◽  
Renato Jaqueto Góes ◽  
Camila Pires Cremasco ◽  
Fernando Ferrari Putti ◽  
...  

The use of alternative systems seeking unsustainability in agricultural production in Brazil, has developed strongly with the use of No-Tillage System (NTS), therefore remodeling the production system. For the production efficiency, it is necessary to use suitable crops as plant cover, depending on the region where the no-tillage system will be set, in which sorghum and millet crops were very positive. Thus, the objective of the work is to perform a systematic literature review on papers approaching the subject with the use of sorghum and millet as a vegetative cover for subsequent no-tillage. It is possible to verify a concentration of the studies after the 2000 decade, in the Southeastern and Central-Western regions of Brazil.


Soil Research ◽  
2009 ◽  
Vol 47 (3) ◽  
pp. 273 ◽  
Author(s):  
R. R. Young ◽  
B. Wilson ◽  
S. Harden ◽  
A. Bernardi

Australian agriculture contributes an estimated 16% of all national greenhouse gas emissions, and considerable attention is now focused on management approaches that reduce net emissions. One area of potential is the modification of cropping practices to increase soil carbon storage. Here, we report short–medium term changes in soil carbon under zero tillage cropping systems and perennial vegetation, both in a replicated field experiment and on nearby farmers’ paddocks, on carbon-depleted Black Vertosols in the upper Liverpool Plains catchment. Soil organic carbon stocks (CS) remained unchanged under both zero tillage long fallow wheat–sorghum rotations and zero tillage continuous winter cereal in a replicated field experiment from 1994 to 2000. There was some evidence of accumulation of CS under intensive (>1 crop/year) zero tillage response cropping. There was significant accumulation of CS (~0.35 Mg/ha.year) under 3 types of perennial pasture, despite removal of aerial biomass with each harvest. Significant accumulation was detected in the 0–0.1, 0.1–0.2, and 0.2–0.4 m depth increments under lucerne and the top 2 increments under mixed pastures of lucerne and phalaris and of C3 and C4 perennial grasses. Average annual rainfall for the period of observations was 772 mm, greater than the 40-year average of 680 mm. A comparison of major attributes of cropping systems and perennial pastures showed no association between aerial biomass production and accumulation rates of CS but a positive correlation between the residence times of established plants and accumulation rates of CS. CS also remained unchanged (1998/2000–07) under zero tillage cropping on nearby farms, irrespective of paddock history before 1998/2000 (zero tillage cropping, traditional cropping, or ~10 years of sown perennial pasture). These results are consistent with previous work in Queensland and central western New South Wales suggesting that the climate (warm, semi-arid temperate, semi-arid subtropical) of much of the inland cropping country in eastern Australia is not conducive to accumulation of soil carbon under continuous cropping, although they do suggest that CS may accumulate under several years of healthy perennial pastures in rotation with zero tillage cropping.


2018 ◽  
Vol 179 ◽  
pp. 38-46 ◽  
Author(s):  
Siyi Liu ◽  
Xiaoping Zhang ◽  
Aizhen Liang ◽  
Jinbo Zhang ◽  
Christoph Müller ◽  
...  

2020 ◽  
Vol 150 ◽  
pp. 107998
Author(s):  
André L.C. Franco ◽  
Maurício R. Cherubin ◽  
Carlos E.P. Cerri ◽  
Johan Six ◽  
Diana H. Wall ◽  
...  

2019 ◽  
Vol 40 (6Supl3) ◽  
pp. 3443 ◽  
Author(s):  
Jean Sérgio Rosset ◽  
Maria do Carmo Lana ◽  
Marcos Gervasio Pereira ◽  
Jolimar Antonio Schiavo ◽  
Leandro Rampim ◽  
...  

In conservation management systems, such as no-till (NT), it is important to analyze the pattern of changes in soil quality as a function of the time since adoption of the system. This study evaluated the physical fractions of organic matter and soil aggregation in management systems in areas cultivated with different times since implementation of NT: 6, 14, and 22 successive years of soybean and maize/wheat crops (NT6, NT14, and NT22, respectively); 12 years of no-till with successive years of soybean and maize/wheat crops, and the last 4 years with integration of maize and ruzi grass (Brachiaria ruziziensis) - (NT+B); pasture; and forest. Physical fractionation of organic matter determined the total carbon (TC), particulate organic matter (POM), and mineral organic matter (MOM) by calculating the carbon management index (CMI) and variables related to soil structural stability. Forest and pasture areas showed the highest contents of TC, POM, and MOM, as well as higher stocks of POM and MOM. Among the cultivated areas, higher TC and particulate fractions of organic matter and the best CMI values were observed in the area of NT22. There were changes in aggregation indices, depending on the time since implementation of NT. Areas of NT22, pasture, and forest showed the greatest evolution in C-CO2, indicating increased biological activity, with positive effects on soil structural stability.


2020 ◽  
Vol 150 ◽  
pp. 03010
Author(s):  
Hassnae Maher ◽  
Rachid Moussadek ◽  
Abdelmjid Zouahri ◽  
Ahmed Douaik ◽  
Houria Dakak ◽  
...  

In Morocco, agriculture is an important sector of the economy, accounting for 15 to 20% of Gross Domestic Product. However, it has faced several challenges: intensive tillage of land that has accelerated water erosion, seriously threatening water and soil potential, low plant cover density and misuse of traditional agricultural practices, causing a decrease in organic matter levels and destroying aggregate stability. Climate change is making water and soil management in agriculture more and more complicated. The major challenge for Moroccan agriculture is to increase agricultural production while preserving natural resources. The objective of our study is to evaluate the effect of no tillage (NT) on the physico- chemical properties of soil in the El Koudia experimental station, Rabat, Morocco. The crop is durum wheat, Arrehane variety. Soil samples are pre-dried, ground and screened to 0.2mm for organic matter (OM) analysis and 2mm for the remainder of the analyses. Plugs, canned, are then sintered, screened and dried for structural stability tests. The results show that no tillage (NT) favours the accumulation of surface OM, particularly at the 0-5cm horizon unlike conventional tillage (CT). The NT promotes structural stability, with a mean weight diameter (MWD) = 0.94mm for the NT compared to 0.83mm for the CT. These results show that soils ploughed in CT are more exposed to erosion degradation than soils not ploughed (NT). In addition, NT preserves soil moisture and promotes additional water retention of 5 to 10%.


Sign in / Sign up

Export Citation Format

Share Document