ridge tillage
Recently Published Documents


TOTAL DOCUMENTS

93
(FIVE YEARS 19)

H-INDEX

19
(FIVE YEARS 2)

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3592
Author(s):  
Zhentao Bai ◽  
Hongguang Liu ◽  
Tangang Wang ◽  
Ping Gong ◽  
Huiqin Li ◽  
...  

To explore the potential of smashing ridge tillage irrigation, it is necessary to investigate how smashing ridge tillage technology with mulched drip irrigation affects soil water, salinity, and cotton yield in saline fields. We conducted a two-year (2020–2021) field experiment to study the effects of different smashing ridge tillage depths on soil bulk density, moisture, salinity, dry matter production, yield, and its constituents (effective bolls, 100-bell weight). There were three smashing ridge tillage depths: A (20 cm), B (40 cm), and C (60 cm), with traditional tillage as the CT. The results showed that all of the smashing ridge tillage could reduce soil bulk density, improve the utilization and uptake of deep soil water during the rapid growth period, and reduce the soil salt content. Compared with the CT treatment, the average soil bulk density of the 0–60 cm soil layer in treatments A, B, and C in 2020 and 2021 decreased by 3.05%, 5.87%, 10.09%, and 1.65%, 4.48%, and 8.49%, respectively. The average soil water content in the 0–120 cm soil layer at the flowering and boll stage decreased by 3.68%, 6.28%, 9.04%, and 3.59%, 6.52%, and 9.98%, respectively; the soil salt content in the 0–120 cm soil layer at the boll opening stage decreased by 4.21%, 6.75%, 11.95%, and 5.47%, 24.25%, and 54.13%, respectively. Cotton dry matter production and yield tended to increase with an increasing depth of smash ridge tillage. Treatment C obtained the maximum dry matter production, seed cotton yield, effective bolls, and 100-boll weight. The dry matter production at the boll opening stage was significantly increased by 17.16% and 15.91%, and the yield was significantly increased by 65.24% and 84.14% in treatments C in 2020 and 2021, respectively, compared to CT. The smashing ridge tillage of 60 cm can optimize the structure of the soil tillage layer and also reduce soil salinity and increase yield, which is the suitable depth of smashing ridge tillage for saline cotton fields in the south of Xinjiang. The findings of the study can provide some theoretical basis and practical experience for the improvement of saline soils and sustainable agricultural development in South Xinjiang, China.


2021 ◽  
Vol 13 (19) ◽  
pp. 10614
Author(s):  
Hongli Li ◽  
Haiou Shen ◽  
Yu Wang ◽  
Yin Wang ◽  
Qiang Gao

Ridge tillage and straw returning are tillage practices widely used in the Chinese Mollisol region. However, the effects of ridge tillage combined with straw returning on runoff and soil loss control are still unclear. The objective of this study was to compare the effects of ridge tillage practices (contour ridge (CR)) and longitudinal ridge (LR), straw returning practices (straw on the furrow surface (SS)) and straw below the furrow (SB)), and their interactions on the runoff and soil loss by using simulated rainfall experiment. Two rainfall intensities (45 and 60 mm h−1) were applied to six combinations of ridge tillage and straw returning (contour ridge treatment, contour ridge with straw on the furrow surface treatment, contour ridge with straw below the furrow treatment, longitudinal ridge treatment, longitudinal ridge with straw on the furrow surface treatment, and longitudinal ridge with straw below the furrow treatment) on a 5° slope. The results showed that the phenomenon of ridge failure was common in the treatments with contour ridge. The average runoff rate and soil loss rate after ridge failure for treatments with contour ridge were separated 2.8 and 3.5 times greater than those of before failure at 60 mm h−1. However, the corresponding values were only 68.6% and 43.3% of the average value of longitudinal ridge treatment and longitudinal ridge with straw below the furrow treatment at 60 mm h−1. The water storage capacities of treatments with contour ridge remained constant when the rainfall intensity varied. The water storage capacities of contour ridge with straw on and below the furrow treatments were separate 3.0 and 1.0 mm less than that of contour ridge. However, longitudinal ridge with straw on the furrow surface treatment increased the runoff rate by 7.4% but reduced the soil loss rate by 72.6% when compared with longitudinal ridge treatment and longitudinal ridge with straw below the furrow treatment under the two rainfall intensities. Longitudinal with straw on the furrow surface treatment was more conducive to the stability of ridges, and there was no significant difference in total soil loss between longitudinal ridge with straw on the furrow surface treatment and treatments with contour ridge. This study was based on simulated rainfall conditions, and its adaptability under long-term positioning monitor in the field should be added in future.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11834
Author(s):  
Baizhao Ren ◽  
Juan Hu ◽  
Peng Liu ◽  
Bin Zhao ◽  
Jiwang Zhang

Waterlogging was one of the main abiotic stresses affecting maize yield and growth in the North China Plain, while ridge tillage effectually improved soil environment, enhanced crop stress resistance to waterlogging, and increased grain yield of waterlogged maize. In order to explore the responses of nitrogen (N) efficiency and antioxidant system of summer maize to waterlogging stress under different tillage, a field experiment was conducted to explore N use efficiency, leaf activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and malondialdehyde (MDA) content of waterlogged maize Denghai 605 (DH605) and Zhengdan 958 (ZD958) under different tillage system (ridge planting and flat planting). Our results showed that ridge tillage was beneficial to ameliorate waterlogging damages on antioxidant system by increasing SOD, POD, and CAT activities, and decreasing MDA content. Moreover, ridge tillage significantly increased N efficiency of waterlogged maize. N translocation amount (NTA), N translocation efficiency (NTE), N contribution proportion (NCP), N harvest index (NHI), and N use efficiency (NUE) of waterlogging treatment under ridge planting system (W-V3+R) for DH605 was increased by 108%, 69%, 60%, 8% and 16%, while ZD958 increased by 248%, 132%, 146%, 13% and 16%, respectively, compared to those of waterlogging treatment under flat planting system (W-V3). Ultimately, ridge tillage led to a significant yield improvement by 39% and 50% for DH605 and ZD958, respectively, compared to that of W-V3. In conclusion, ridge tillage was conducive to retard leaf aging, and enhance nitrogen efficiency, thereby resulting in a yield improvement of waterlogged summer maize.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1054
Author(s):  
Bo Li ◽  
Xinyu Chen ◽  
Xiaoxu Shi ◽  
Jian Liu ◽  
Yafeng Wei ◽  
...  

Ridge tillage is an effective agronomic practice and a miniature precision agriculture; however, its effects on the growth of faba beans (Vicia faba L.) are poorly understood. This study aimed to determine the effect of ridge tillage and straw mulching on the root growth, nutrient accumulation and yield of faba beans. Field experiments were conducted during 2016 and 2017 cropping seasons and comprised four treatments: ridge tillage without any mulching (RT), flat tillage without any mulch (FT), flat tillage with rice straw mulched on the ridge tillage (FTRSM) and ridge tillage with rice straw mulched on the ridge tillage (RTRSM). The RT and RTRSM increased soil temperature and decreased soil humidity and improved soil total nitrogen, total phosphorus, available potassium and organic matter. RT and RTRSM increased the root length density, root surface area, root diameter and root activity of faba beans at flowering and harvest periods. The RT and RTRSM also increased the nitrogen, phosphorus, potassium absorption and the yield of faba beans. These results indicated that ridge tillage and straw mulching affect faba bean growth by improving soil moisture conditions and providing good air permeability and effective soil nutrition supply. This study provides a theoretical basis for the high yield cultivation improvement of faba beans.


2021 ◽  
Vol 13 (2) ◽  
pp. 890
Author(s):  
Jie Zhang ◽  
Yaojun Liu ◽  
Taihui Zheng ◽  
Xiaomin Zhao ◽  
Hongguang Liu ◽  
...  

Sloping farmland is prevalent in hilly red soil areas of South China. Improper tillage patterns induce decreased soil organic matter, soil aggregate breakdown, and nutrient imbalance, thereby restricting crop production. However, the stoichiometric characteristics could reflect the nutrient availability which was mostly studied on bulk soil. The stoichiometric characteristics of soil aggregates with multiple functions in farmlands has rarely been studied. The study was to reveal the impact of tillage patterns on the size distribution, nutrient levels, and stoichiometric ratios of soil aggregates after 20 years’ cultivation. Soil samples of 0–20 cm and 20–40 cm from five tillage patterns, bare-land control (BL), longitudinal-ridge tillage (LR), conventional tillage + straw mulching (CS), cross-ridge tillage (CR), and longitudinal-ridge tillage + hedgerows (LH) were collected. The elemental content (C, N and P) and soil aggregate size distribution were determined, and the stoichiometric ratios were subsequently calculated. Through our analysis and study, it was found that the nutrient content of >2 mm soil aggregates in all plots was the highest. In the hedgerow plots, >2 mm water-stable soil aggregate content was increased. Therefore, LH plots have the highest content of organic matter and nutrients. After 20 years of cultivation, stoichiometric ratio of each plot showed different changes on soil aggregates at different levels. the C:N, C:P, and N:P ratios are lower than the national average of cultivated land. Among of them, the stoichiometric ratio in the LH plot is closer to the mean and showed better water-stable aggregate enhancement. Therefore, longitudinal-ridge tillage + hedgerows can be recommended as a cultivation measure. This study provides a reference for determining appropriate tillage measures, balancing nutrient ratios, and implementing rational fertilization.


2020 ◽  
Author(s):  
Chuan Qin ◽  
Alan L. Wright ◽  
Lihua Ma ◽  
Xinhua He ◽  
Deti Xie ◽  
...  

Author(s):  
Jing Zhang ◽  
Faqiao Li ◽  
Peizuo Liao ◽  
Aziz Khan ◽  
Izhar Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document