Accumulation of soil carbon under zero tillage cropping and perennial vegetation on the Liverpool Plains, eastern Australia

Soil Research ◽  
2009 ◽  
Vol 47 (3) ◽  
pp. 273 ◽  
Author(s):  
R. R. Young ◽  
B. Wilson ◽  
S. Harden ◽  
A. Bernardi

Australian agriculture contributes an estimated 16% of all national greenhouse gas emissions, and considerable attention is now focused on management approaches that reduce net emissions. One area of potential is the modification of cropping practices to increase soil carbon storage. Here, we report short–medium term changes in soil carbon under zero tillage cropping systems and perennial vegetation, both in a replicated field experiment and on nearby farmers’ paddocks, on carbon-depleted Black Vertosols in the upper Liverpool Plains catchment. Soil organic carbon stocks (CS) remained unchanged under both zero tillage long fallow wheat–sorghum rotations and zero tillage continuous winter cereal in a replicated field experiment from 1994 to 2000. There was some evidence of accumulation of CS under intensive (>1 crop/year) zero tillage response cropping. There was significant accumulation of CS (~0.35 Mg/ha.year) under 3 types of perennial pasture, despite removal of aerial biomass with each harvest. Significant accumulation was detected in the 0–0.1, 0.1–0.2, and 0.2–0.4 m depth increments under lucerne and the top 2 increments under mixed pastures of lucerne and phalaris and of C3 and C4 perennial grasses. Average annual rainfall for the period of observations was 772 mm, greater than the 40-year average of 680 mm. A comparison of major attributes of cropping systems and perennial pastures showed no association between aerial biomass production and accumulation rates of CS but a positive correlation between the residence times of established plants and accumulation rates of CS. CS also remained unchanged (1998/2000–07) under zero tillage cropping on nearby farms, irrespective of paddock history before 1998/2000 (zero tillage cropping, traditional cropping, or ~10 years of sown perennial pasture). These results are consistent with previous work in Queensland and central western New South Wales suggesting that the climate (warm, semi-arid temperate, semi-arid subtropical) of much of the inland cropping country in eastern Australia is not conducive to accumulation of soil carbon under continuous cropping, although they do suggest that CS may accumulate under several years of healthy perennial pastures in rotation with zero tillage cropping.

2006 ◽  
Vol 46 (8) ◽  
pp. 993 ◽  
Author(s):  
S. M. Robertson

The impact of different management strategies on production and profit can be evaluated with knowledge of how sheep production responds to changes in the available feed base and sheep or pasture management. This study aimed to quantify on-farm pasture and sheep production in mixed sheep and cropping systems in the Victorian Mallee of south-eastern Australia (325 ± 50 mm annual rainfall) as a prelude to computer simulation modelling. During 2001 (average rainfall) and 2002 (extreme drought) pasture production, the feed base and sheep production were monitored in 15 paddocks on 5 properties located across the region. Crop stubbles were the major source of feed for 6 months of the year, enabling ewes to maintain liveweight. There was more variation in pasture parameters between paddocks at the 1 location than between locations. The botanical composition, plant density, soil fertility and management were key variables associated with between-paddock variation in pasture production. Variation in pasture production between years was larger than within-year differences. In contrast, stocking rates were not much lower in the drought year of 2002 than in 2001. This study suggests there is potential for management to improve pasture production, and demonstrates the importance of feed sources other than annual pasture for sheep production in environments where the annual pasture growing season is short.


1996 ◽  
Vol 36 (7) ◽  
pp. 823 ◽  
Author(s):  
JS Russell ◽  
PN Jones

Three cropping systems using 5 crop species were compared over a 10-year period on a cracking clay soil (Vertisol) in the sub-humid subtropics of eastern Australia. The 3 cropping systems were continuous (the same crop every year), alternate (the same crop every second year) and double (a winter and summer crop in the one year). There were 2 cereal crops (sorghum and wheat) and 3 grain legumes (chickpea, green gram and black gram). The effect of cropping system was measured in terms of grain and protein yields and changes in soil organic carbon (surface 0-10 cm) and nitrogen concentrations. Summer and winter rainfall was below average in 8 and 5 years out of 10, respectively. Grain yield of cereal monocultures was about twice that of legume monocultures. The potential for double cropping, despite the generally below-average rainfall, was clearly shown with the highest grain and protein yields coming from the combination of green gram (summer) and wheat (winter). Averaged over 10 years, wheat yield (1460 kg/ha. year) was identical in the continuous and alternate cropping systems. Sorghum yields were marginally higher with alternate cropping (1340 kg/ha. year) than continuous cropping (1050 kg/ha. year). With double cropping, average wheat yields were 1081 and 698 kg/ha when combined with green and black gram, respectively. Black gram gave half the average yield of either green gram or chickpea (about 300 v. 600 kg/ha). This was attributed to the indeterminate nature of the crop in an environment with variable rainfall and to the detrimental effect of above-average rainfall during harvest time. Soil nitrogen and carbon levels, with initial values of 0.22 and 2.96%, were reduced at the end of 10 years by 16 and 27% respectively. Their rate of decline did not differ between cropping systems.


Soil Research ◽  
2014 ◽  
Vol 52 (4) ◽  
pp. 388 ◽  
Author(s):  
Rick Young ◽  
Neil Huth ◽  
Steven Harden ◽  
Ross McLeod

The impact of cropping on the hydrology and fertility of Vertosols in the northern Darling Basin (average annual rainfall >550 mm) has received much attention, together with the constraints placed on crop growth by naturally occurring subsoil salt stocks. These factors have not been quantified in the drier (450–550 mm), marginal cropping areas to the west. With widespread adoption of zero tillage technology and the potential for large increases in the capture and storage of rainfall in good seasons, mobilisation of salt could be exacerbated should crop water use be constrained by salt toxicity and/or nutrient deficiency. We investigated the size of salt stocks, historic deep drainage, and nutrient depletion under continuous cropping in the Grey and Brown Vertosols of the Walgett and Coonamble districts of north-western NSW. Soils collected from seven paired sites (cropped v. control native vegetation) showed chloride concentrations >500 mg/kg within 0–1.2 m, high exchangeable sodium percentage (~30%) at depth and deficiency in phosphorus, manganese and zinc. Soil total nitrogen decreased from an average stock of 4.9 t/ha at a rate of 0.008 t/ha.year under cropping within 0–0.1 m and soil carbon stocks decreased from 39 t/ha by 0.20 t/ha.year within 0–0.5 m.. Despite low rainfall, high evaporation and the large water-holding capacity of the cracking clays, there were significant downward shifts in chloride concentrations under cropping. Estimates of deep drainage under continuous cropping using chloride mass balance, chloride-front displacement and crop water-balance modelling with the Agricultural Production Systems Simulator (APSIM) generally agreed (range 0.1–2% of average annual rainfall). Simulations suggested that deep drainage may be increased 5–10-fold under zero-tillage winter cropping due to enhanced capture of rainfall by zero tillage compared with traditional practices. The associated flushing of salt from the root-zone together with correction of nutrient deficiency would enhance crop water use and productivity. Current methods indicate little storage in the subsoil for future deep drainage and that hydraulic conductivity is very low. Hence, the long-term effects of any increase in drainage rates, due to changes in cropping practices and/or climate, on the potential for salinisation of groundwater or transient water logging of the surface, are equivocal.


2016 ◽  
Vol 27 (3) ◽  
pp. 612-619 ◽  
Author(s):  
Agata Novara ◽  
Ignazio Poma ◽  
Mauro Sarno ◽  
Giacomo Venezia ◽  
Luciano Gristina

Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1222
Author(s):  
Niloufar Nasrollahi ◽  
James Hunt ◽  
Caixian Tang ◽  
David Cann

Most dryland grain growers in Australia retain all or most of their crop residues to protect the soil from erosion and to improve water conservation but retaining stubbles with a high carbon-to-nitrogen (C:N) ratio can affect N availability to crops. A simulation experiment was conducted to investigate the effects of N fertilizer application rate and residue retention on soil N dynamics. The simulation used seven N fertilizer application rates (0, 25, 50, 75, 100, 150 and 200 kg N ha−1) to wheat (Triticum aestivum) over 27 years (1990–2016) at four locations across a gradient in annual rainfall in Victoria, Australia. Nitrogen immobilization, denitrification and N leaching loss were predicted and collectively defined as sources of N inefficiency. When residues were retained, immobilization was predicted to be the biggest source of inefficiency at all simulated sites at N application rates currently used by growers. Leaching became a bigger source of inefficiency at one site with low soil water-holding capacity, but only at N rates much higher than would currently be commercially applied, resulting in high levels of nitrate (NO3−) accumulating in the soil. Denitrification was an appreciable source of inefficiency at higher rainfall sites. Further research is necessary to evaluate strategies to minimize immobilization of N in semi-arid cropping systems.


1991 ◽  
Vol 31 (4) ◽  
pp. 515 ◽  
Author(s):  
AL Cogle ◽  
RJ Bateman ◽  
DH Heiner

A farming systems project was commenced in the semi-arid tropics of north-eastern Australia to assess the cropping potential and reliability of a newly developing region. Emphasis was placed on evaluation of conservation cropping systems, since it was expected that these would be the most successful and protective uses of the land. This paper discusses the agronomy of peanuts, maize and sorghum grown under different conservative cropping practices (reduced tillage, no tillage, ley) on the soil (red earth) most likely to be developed for large-scale cropping in the region. Crop yields with all practices were limited by establishment difficulties including high soil temperatures, poor weed control and climatic variability. Reduced tillage was more successful than no tillage due to higher yields in dry years; however, in wet years no tillage produced similar yields. The ley cropping system may have some advantages in this environment for integrated production and resource protection.


Soil Research ◽  
2010 ◽  
Vol 48 (2) ◽  
pp. 125 ◽  
Author(s):  
J. G. Nuttall ◽  
R. D. Armstrong

Subsoil physicochemical constraints can limit crop production on alkaline soils of south-eastern Australia. Fifteen farmer paddocks sown to a range of crops including canola, lentil, wheat, and barley in the Wimmera and Mallee of Victoria and the mid-north and Eyre Peninsula of South Australia were monitored from 2003 to 2006 to define the relationship between key abiotic/edaphic factors and crop growth. The soils were a combination of Calcarosol and Vertosol profiles, most of which had saline and sodic subsoils. There were significant correlations between ECe and Cl– (r = 0.90), ESP and B (r = 0.82), ESP and ECe (r = 0.79), and ESP and Cl– (r = 0.73). The seasons monitored had dry pre-cropping conditions and large variations in spring rainfall in the period around flowering. At sowing, the available soil water to a depth of 1.2 m (θa) averaged 3 mm for paddocks sown to lentils, 28 mm for barley, 44 mm for wheat, and 92 mm for canola. Subsoil constraints affected canola and lentil crops but not wheat or barley. For lentil crops, yield variation was largely explained by growing season rainfall (GSR) and θa in the shallow subsoil (0.10–0.60 m). Salinity in this soil layer affected lentil crops through reduced water extraction and decreased yields where ECe exceeded 2.2 dS/m. For canola crops, GSR and θa in the shallow (0.10–0.60 m) and deep (0.60–1.20 m) layers were important factors explaining yield variation. Sodicity (measured as ESP) in the deep subsoil (0.80–1.00 m) reduced canola growth where ESP exceeded 16%, corresponding to a 500 kg/ha yield penalty. For cereal crops, rainfall in the month around anthesis was the most important factor explaining grain yield, due to the large variation in rainfall during October combined with the determinant nature of these crops. For wheat, θa in the shallow subsoil (0.10–0.60 m) at sowing was also an important factor explaining yield variation. Subsoil constraints had no impact on cereal yield in this study, which is attributed to the lack of available soil water at depth, and the crops’ tolerance of the physicochemical conditions encountered in the shallow subsoil, where plant-available water was more likely to occur. Continuing dry seasonal conditions may mean that the opportunity to recharge soil water in the deeper subsoil, under continuous cropping systems, is increasingly remote. Constraints in the deep subsoil are therefore likely to have reduced impact on cereals under these conditions, and it is the management of water supply, from GSR and accrued soil water, in the shallow subsoil that will be increasingly critical in determining crop yields in the future.


2011 ◽  
Vol 92 (1) ◽  
pp. 107-118 ◽  
Author(s):  
D. K. Benbi ◽  
Kiranvir Brar ◽  
A. S. Toor ◽  
Pritpal Singh ◽  
Hargopal Singh

2011 ◽  
Vol 8 (6) ◽  
pp. 10053-10093
Author(s):  
W. A. Timms ◽  
R. R. Young ◽  
N. Huth

Abstract. The magnitude and timing of deep drainage and salt leaching through clay soils is a critical issue for dryland agriculture in semi-arid regions (<500 mm yr−1 rainfall), such as parts of Australia's Murray-Darling Basin (MDB). In this unique study, hydrogeological measurements and estimations of the historic water balance of crops grown on overlying Grey Vertosols were combined to estimate the contribution of deep drainage below crop roots to recharge and salinization of shallow groundwater. Soil sampling at two sites on the alluvial flood plain of the Lower Namoi catchment revealed significant peaks in chloride concentrations at 0.8–1.2 m depth under perennial vegetation and at 2.0–2.5 m depth under continuous cropping indicating deep drainage and salt leaching since conversion to cropping. Total salt loads of 91–229 t ha−1 NaCl equivalent were measured for perennial vegetation and cropping, with salinity to ≥10 m depth that is not detected by shallow soil surveys. Groundwater salinity varied spatially from 910 to 2430 mS m−1 at 21 to 37 m depth (N = 5), whereas deeper groundwater was less saline (290 mS m−1) with use restricted to livestock and rural domestic supplies in this area. The Agricultural Production Systems Simulator (APSIM) software package predicted deep drainage of 3.3–9.5 mm yr−1 (0.7–2.1% rainfall) based on site records of grain yields, rainfall, salt leaching and soil properties. Predicted deep drainage was highly episodic, dependent on rainfall and antecedent, and over a 39 yr period was restricted mainly to the record wet winter of 1998. During the study period, groundwater levels were unresponsive to major rainfall events (70 and 190 mm total), and most piezometers at about 18 m depth remained dry. In this area, at this time, recharge negligible due to low rainfall and large potential evapotranspiration, transient hydrological conditionsafter changes in land use and a thick clay dominated vadose zone. This is in contrast to regional groundwater modelling that assumes annual recharge of 0.5% of rainfall. Importantly, it was found that leaching from episodic deep drainage could not cause discharge of saline groundwater in the area, since the water table was several meters below the incised river bed.


2022 ◽  
Vol 14 (1) ◽  
pp. 543
Author(s):  
Mukhtar Ahmad Faiz ◽  
Ram Swaroop Bana ◽  
Anil Kumar Choudhary ◽  
Alison M. Laing ◽  
Ruchi Bansal ◽  
...  

Pearl millet-based cropping systems with intensive tillage operations prior to sowing have limited sustainable productivity in the low-irrigation conditions of semi-arid farming ecologies, such as those in the north Indian plains. The adoption of improved management practices such as zero tillage with residue retention (ZTR) and diversification with the inclusion of summer pulse crops has the potential to improve cropping system sustainability. Therefore, an experiment was designed to compare two improved management practices, zero tillage (ZT) and ZTR, to conventional tillage (CT), across three pearl millet-based cropping systems: pearl millet–chickpea (PM–CP), PM–CP–mungbean (MB), and PM–CP–forage pearl millet in a two-year experiment. Experimental treatments were compared in terms of pearl millet productivity, mineral biofortification, and greenhouse gas emissions. Results showed a significant increase in pearl millet yield attributes, grain and stover productivity, nutrient uptake, and micronutrient biofortification in the PM–CP–MB cropping system under ZTR relative to other treatment combinations. On-farm evaluation at different locations also showed that the intensification of PM–CP system using summer crops enhanced pearl millet productivity across diverse tillage systems. Overall, zero tillage practices combined with diversified pearl millet-based cropping systems are likely to be management practices, which farmers can use to sustainably maintain or increase cropping system productivity in the various semi-arid areas of the world.


Sign in / Sign up

Export Citation Format

Share Document