A conditional sampling method based on fuzzy clustering for the analysis of large-scale dynamics in turbulent flows

2006 ◽  
Vol 25 (2) ◽  
pp. 172-191 ◽  
Author(s):  
G. Usera ◽  
A. Vernet ◽  
J. Pallares ◽  
J.A. Ferré
2018 ◽  
Vol 146 (2) ◽  
pp. 503-523 ◽  
Author(s):  
Maria J. Chinita ◽  
Georgios Matheou ◽  
João Teixeira

Abstract In convective flows, vertical turbulent fluxes, covariances between vertical velocity and scalar thermodynamic variables, include contributions from local mixing and large-scale coherent motions, such as updrafts and downdrafts. The relative contribution of these motions to the covariance is important in turbulence parameterizations. However, the flux partition is challenging, especially in regions without convective cloud. A method to decompose the vertical flux based on the corresponding joint probability density function (JPD) is introduced. The JPD-based method partitions the full JPD into a joint Gaussian part and the complement, which represent the local mixing and the large-scale coherent motions, respectively. The coherent part can be further divided into updraft and downdraft parts based on the sign of vertical velocity. The flow decomposition is independent of water condensate (cloud) and can be applied in cloud-free convection, the subcloud layer, and stratiform cloud regions. The method is applied to large-eddy simulation model data of three boundary layers. The results are compared with traditional cloud and cloud-core decompositions and a decaying scalar conditional sampling method. The JPD-based method includes a single free parameter and sensitivity tests show weak dependence on the parameter values. The results of the JPD-based method are somewhat similar to the cloud-core and conditional sampling methods. However, differences in the relative magnitude of the flux decomposition terms suggest that an objective definition of the flow regions is subtle and diagnosed flow properties like updraft characteristics depend on the sampling method. Moreover, the flux decomposition depends on the thermodynamic variable and convection characteristics.


Author(s):  
Yanzhe Sun ◽  
Kai Sun ◽  
Tianyou Wang ◽  
Yufeng Li ◽  
Zhen Lu

Emission and fuel consumption in swirl-supported diesel engines strongly depend on the in-cylinder turbulent flows. But the physical effects of squish flow on the tangential flow and turbulence production are still far from well understood. To identify the effects of squish flow, Particle image velocimetry (PIV) experiments are performed in a motored optical diesel engine equipped with different bowls. By comparing and associating the large-scale flow and turbulent kinetic energy (k), the main effects of the squish flow are clarified. The effect of squish flow on the turbulence production in the r−θ plane lies in the axial-asymmetry of the annular distribution of radial flow and the deviation between the ensemble-averaged swirl field and rigid body swirl field. Larger squish flow could promote the swirl center to move to the cylinder axis and reduce the deformation of swirl center, which could decrease the axial-asymmetry of annular distribution of radial flow, further, that results in a lower turbulence production of the shear stress. Moreover, larger squish flow increases the radial fluctuation velocity which makes a similar contribution to k with the tangential component. The understanding of the squish flow and its correlations with tangential flow and turbulence obtained in this study is beneficial to design and optimize the in-cylinder turbulent flow.


2005 ◽  
Vol 62 (2) ◽  
pp. 443-459 ◽  
Author(s):  
H. Gerber ◽  
G. Frick ◽  
S. P. Malinowski ◽  
J-L. Brenguier ◽  
F. Burnet

Abstract Aircraft flights through stratocumulus clouds (Sc) during the Dynamics and Chemistry of Marine Stratocumulus II (DYCOMS-II) study off the California coast found narrow in-cloud regions with less liquid water content (LWC) and cooler temperatures than average background values. The regions are named cloud holes and are assumed to be a result of water evaporated by the entrainment of dryer air from above the Sc. While such features have been noted previously, this study provided a unique opportunity to investigate in much greater detail the nature of the holes, as well as their relationship to the entrainment rate, because high-speed temperature and LWC probes with maximum spatial resolution of 10 cm were flown together for the first time. Nine long-duration flights were made through mostly unbroken Sc for which conditional sampling was used to identify the location and size of the holes. The holes are concentrated near cloud top, their average width near cloud top is about 5 m, their relative length distribution is nearly constant for all flights, and they can penetrate hundreds of meters deep into the Sc before being lost by mixing. Entrainment velocities at cloud top are estimated from measurements of fluxes of reduced LWC and vapor mixing ratios in holes, the fraction of cloud area covered by holes, and the total water jump between cloud top and the free atmosphere. Rates as large as 10 mm s−1 are found for nocturnal flights, and these rates are about 3 times larger than for daytime flight segments. The rates correlate best with the size of the buoyancy jump above the Sc; the present conditional-sampling approach for measuring the rates gives larger rates than the “flux jump” rates determined by others for the same flights by a factor of about 2. The stability criterion for all Sc predicts thinning and breakup of the Sc, which does not occur. The minimal amount of cloud-top evaporative cooling caused by entrainment contributes little to the top-down convection dominated by radiative cooling during nocturnal flights; however, evaporative cooling caused by the mixing of holes as they subduct with the large-scale eddy circulation in the Sc may contribute, but with an as-of-yet unknown amount.


1970 ◽  
Vol 41 (2) ◽  
pp. 283-325 ◽  
Author(s):  
Leslie S. G. Kovasznay ◽  
Valdis Kibens ◽  
Ron F. Blackwelder

The outer intermittent region of a fully developed turbulent boundary layer with zero pressure gradient was extensively explored in the hope of shedding some light on the shape and motion of the interface separating the turbulent and non-turbulent regions as well as on the nature of the related large-scale eddies within the turbulent regime. Novel measuring techniques were devised, such as conditional sampling and conditional averaging, and others were turned to new uses, such as reorganizing in map form the space-time auto- and cross-correlation data involving both the U and V velocity components as well as I, the intermittency function. On the basis of the new experimental results, a conceptual model for the development of the interface and for the entrainment of new fluid is proposed.


2012 ◽  
Vol 24 (5) ◽  
pp. 055112 ◽  
Author(s):  
Adrian Zenklusen ◽  
Simon Kuhn ◽  
Philipp Rudolf von Rohr

2021 ◽  
Author(s):  
Christina Tsai ◽  
Kuang-Ting Wu

<p>It is demonstrated that turbulent boundary layers are populated by a hierarchy of recurrent structures, normally referred to as the coherent structures. Thus, it is desirable to gain a better understanding of the spatial-temporal characteristics of coherent structures and their impact on fluid particles. Furthermore, the ejection and sweep events play an important role in turbulent statistics. Therefore, this study focuses on the characterizations of flow particles under the influence of the above-mentioned two structures.</p><div><span>With regard to the geometry of turbulent structures, </span><span>Meinhart & Adrian (1995) </span>first highlighted the existence of large and irregularly shaped regions of uniform streamwise momentum zone (hereafter referred to as a uniform momentum zone, or UMZs), regions of relatively similar streamwise velocity with coherence in the streamwise and wall-normal directions.  <span>Subsequently, </span><span>de Silva et al. (2017) </span><span>provided a detection criterion that had previously been utilized to locate the uniform momentum zones (UMZ) and demonstrated the application of this criterion to estimate the spatial locations of the edges that demarcates UMZs.</span></div><div> </div><div>In this study, detection of the existence of UMZs is a pre-process of identifying the coherent structures. After the edges of UMZs are determined, the identification procedure of ejection and sweep events from turbulent flow DNS data should be defined. As such, an integrated criterion of distinguishing ejection and sweep events is proposed. Based on the integrated criterion, the statistical characterizations of coherent structures from available turbulent flow data such as event durations, event maximum heights, and wall-normal and streamwise lengths can be presented.</div>


Author(s):  
Matthew C. Dunn ◽  
Babak Shotorban ◽  
Abdelkader Frendi

This paper is concerned with the propagation of uncertainties in the values of turbulence model coefficients and parameters in turbulent flows. These coefficients and parameters are determined from experiments performed on elementary flows and they are subject to uncertainty. The widely used k–ε turbulence model is considered. It consists of model transport equations for the turbulence kinetic energy and rate of turbulent dissipation. Both equations involve various model coefficients about which adequate knowledge is assumed known in the form of probability density functions. The study is carried out for the flow over a 2D backward-facing step configuration. The Latin Hypercube Sampling method is employed for the uncertainty quantification purposes as it requires a smaller number of samples compared to the conventional Monte-Carlo method. The mean values are reported for the flow output parameters of interest along with their associated uncertainties. The results show that model coefficient variability has significant effects on the streamwise velocity component in the recirculation region near the reattachment point and turbulence intensity along the free shear layer. The reattachment point location, pressure, and wall shear are also significantly affected.


Author(s):  
Ahliddin Malikov

Although many studies have stressed potential benefits of using Sukuk for funding large-scale infrastructure projects, several technical, legal, and political obstacles that are encountered by new sovereign and corporate issuers, investors, and Shari'ah boards remain largely unexplored. This research evaluates the opportunities, barriers, and potential risks for future Sukuk issuances that are proposed for funding large-scale infrastructure projects in developing countries. A purposive sampling method was employed to conduct in-depth interviews with several Islamic finance experts in support of the qualitative data analysis. Using the maximal variation and snowball approach, the researcher identifies the key challenges for large-scale Sukuk issuances and provides useful interpretations that can contribute to the expansion of Sukuk structures for a wider international investor base.


Sign in / Sign up

Export Citation Format

Share Document