Buckling behavior of composite and functionally graded material plates

2020 ◽  
Vol 80 ◽  
pp. 103921 ◽  
Author(s):  
José S. Moita ◽  
Aurélio L. Araújo ◽  
Victor Franco Correia ◽  
Cristóvão M. Mota Soares ◽  
José Herskovits
2016 ◽  
Vol 52 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Amlan Paul ◽  
Debabrata Das

In the present work, the non-linear post-buckling load–deflection behavior of tapered functionally graded material beam is studied for different in-plane thermal loadings. Two different thermal loadings are considered. The first one is due to the uniform temperature rise and the second one is due to the steady-state heat conduction across the beam thickness leading to non-uniform temperature rise. The governing equations are derived using the principle of minimum total potential energy employing Timoshenko beam theory. The solution is obtained by approximating the displacement fields following Ritz method. Geometric non-linearity for large post-buckling behavior is considered using von Kármán type non-linear strain-displacement relationship. Stainless steel/silicon nitride functionally graded material beam is considered with temperature-dependent material properties. The validation of the present work is successfully performed using finite element software ANSYS and using the available result in the literature. The post-buckling load–deflection behavior in non-dimensional plane is presented for different taperness parameters and also for different volume fraction indices. Normalized transverse deflection fields are presented showing the shift of the point of maximum deflection for various deflection levels. The results are new of its kind and establish benchmark for studying non-linear thermo-mechanical behavior of tapered functionally graded material beam.


Author(s):  
Nan Li ◽  
Hongyan Zhang ◽  
Changqing Bai

Functionally graded material (FGM) has an important application prospect in aircraft engineering, especially in smart aircraft. The dynamic behavior of FGM has been widely investigated so far but more work is needed for the porous FGM pipes conveying fluid. In this paper, a sensible pore distribution function related with the volume fraction of metal and ceramic is proposed for the dynamic modeling of porous FGM pipes conveying fluid. The maximum porosity and its corresponding position are taken into account in the present mechanical model. The material properties of the porous pipes are temperature dependent and can be affected by pore distribution. The governing equation of the porous FGM pipe is derived and then the exact solution of post buckling is obtained. The nonlinear primary resonance is determined by the multiple scale method. It is shown that the effect of the pore distribution is very significant on the post buckling behavior and nonlinear primary resonance of the porous FGM pipes. The current work is very helpful in understanding the influence of pore distribution on static and dynamic behavior of pores FGM structures in engineering practice.


2016 ◽  
Vol 58 (3) ◽  
pp. 260-268 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Noha Fouda

Sign in / Sign up

Export Citation Format

Share Document