P.0900 The potential role of interferon signaling in migraine: a gene expression study

2021 ◽  
Vol 53 ◽  
pp. S661-S662
Author(s):  
S. Kumar ◽  
K. Gecse ◽  
D. Baksa ◽  
X. Gonda ◽  
G. Bagdy ◽  
...  
2016 ◽  
Author(s):  
Francesco Caiazza ◽  
Robert Power ◽  
Kate Killick ◽  
Des Higgins ◽  
Walter Kolch ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Lorena B. Conchillo ◽  
Rosario Haro ◽  
Begoña Benito

There is mounting evidence that the root-colonizing endosymbiotic fungus Serendipita indica improves plant growth. The beneficial effects have been observed when plants are growing in optimal conditions or under nutritionally deficient soils (e.g., phosphate poor soil) or exposed to stressful environmental conditions such as drought or salinity. However, until now its role in the nutrition of other plant essential macronutrient, such as K+, has not been fully clarified. Here, we study the role of the fungus in the K+ nutrition of Arabidopsis thaliana plants, during growth under K+ limiting conditions. As a first step, we studied the high-affinity K+ uptake of the plant and fungus when growing separately and in symbiosis. In the search for putative fungal actors involved in K+ nutrition, we also have cloned and functionally characterized the K+ transporters of S. indica SiHAK1, SiTRK1, SiTRK2, and SiTOK1, among which it has been shown that SiHAK1 is the main transporter involved in the K+ uptake in the high affinity range of concentrations. In addition, a gene expression study of these transporters and other candidates that could participate in the K+ homeostasis of the fungus has been carried out. The results indicated that, contrary to what happens with P nutrition, S. indica seems not to improve neither the growth nor the plant K+ reserves during K+ starvation. Instead, this nutritionally restrictive condition favored fungal colonization, suggesting that the fungus obtains the greatest benefit in K+ supply during symbiosis.


2017 ◽  
Author(s):  
N Kretschmer ◽  
A Deutsch ◽  
B Rinner ◽  
M Scheideler ◽  
R Bauer

Author(s):  
Makoto Kinoshita ◽  
Florian Freudenberg ◽  
Esin Candemir ◽  
Sarah Kittel-Schneider

Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


2011 ◽  
Vol 96 (7) ◽  
pp. E1188-E1196 ◽  
Author(s):  
Jing Ting Zhao ◽  
Mark J. Cowley ◽  
Paul Lee ◽  
Vita Birzniece ◽  
Warren Kaplan ◽  
...  

Author(s):  
Hoang Dong Nguyen ◽  
Martine Bisson ◽  
Michelle Scott ◽  
Gilles Boire ◽  
Luigi Bouchard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document