Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites

2007 ◽  
Vol 43 (4) ◽  
pp. 1097-1104 ◽  
Author(s):  
Konstantinos G. Gatos ◽  
József Karger-Kocsis
Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2654 ◽  
Author(s):  
Hanna J. Maria ◽  
Martin George Thomas ◽  
Marco Morreale ◽  
Francesco Paolo La Mantia ◽  
Ange Nzihou ◽  
...  

In this paper, gas permeability studies were performed on materials based on natural rubber/acrylonitrile butadiene rubber blends and nanoclay incorporated blend systems. The properties of natural rubber (NR)/nitrile rubber (NBR)/nanoclay nanocomposites, with a particular focus on gas permeability, are presented. The measurements of the barrier properties were assessed using two different gases—O2 and CO2—by taking in account the blend composition, the filler loading and the nature of the gas molecules. The obtained data showed that the permeability of gas transport was strongly affected by: (i) the blend composition—it was observed that the increase in acrylonitrile butadiene rubber component considerably decreased the permeability; (ii) the nature of the gas—the permeation of CO2 was higher than O2; (iii) the nanoclay loading—it was found that the permeability decreased with the incorporation of nanoclay. The localization of nanoclay in the blend system also played a major role in determining the gas permeability. The permeability of the systems was correlated with blend morphology and dispersion of the nanoclay platelets in the polymer blend.


2015 ◽  
Vol 30 (2) ◽  
pp. 143-173 ◽  
Author(s):  
Seyed Ahmad Attaran ◽  
Azman Hassan ◽  
Mat Uzir Wahit

Concerns about environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer demand for high-quality food products have led to increased interest in the development of biodegradable packaging materials using annually renewable natural biopolymers. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low barrier properties can be recovered by applying nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to large nanoparticle surface area and their significant aspect ratios. Additionally, natural biopolymer is susceptible to microorganisms, resulting in good biodegradability, which is one of the most promising aspects of its incorporation in packaging materials and industries. The present review article explains the various categories of nanoclay and bio-based polymer-based composites with particular regard to their application as packaging materials. It also gives an overview of the most recent advances and emerging new aspects of nanotechnology for development of composites for environmentally compatible food packaging materials.


2010 ◽  
Vol 119 (6) ◽  
pp. 3476-3482 ◽  
Author(s):  
Roberto Valsecchi ◽  
Luca Torlaj ◽  
Stefano Turri ◽  
Claudio Tonelli ◽  
Marinella Levi

2012 ◽  
Vol 21 (5) ◽  
pp. 096369351202100
Author(s):  
Vikas Mittal

The modified forms of Halpin Tsai model for the prediction of tensile modulus of polyolefin-layered silicate nanocomposites are discussed. The assumptions used in the conventional model like perfect alignment of the particulate filler, uniform shape and size of the filler particles as well as interfacial adhesion between the polymer and filler surface do not hold true in the case of polymer nanocomposites especially using polyolefinic matrices. The modulus reduction factors suggested for polar nanocomposites are also dependent on the polymer nature as well as filler morphology in the composite, thus, are not applicable directly to the polyolefin composites. A master curve could be generated for polyolefin nanocomposites which provided more accurate modulus reduction factor value based on the average aspect ratio of the filler. Incorporation of the effects of incomplete exfoliation as well as filler misalignment though improved the prediction capabilities of the model, however, it still did not match the predictions generated from finite element analysis or TEM analysis. The effect of absence of adhesion forces at the interface was incorporated by suggesting simple modification to the modified Halpin Tsai model equation. Master curves could be generated which predicted the relative tensile modulus of the composites accurately if the value of average aspect ratio was known.


Sign in / Sign up

Export Citation Format

Share Document