Materials for food packaging applications based on bio-based polymer nanocomposites

2015 ◽  
Vol 30 (2) ◽  
pp. 143-173 ◽  
Author(s):  
Seyed Ahmad Attaran ◽  
Azman Hassan ◽  
Mat Uzir Wahit

Concerns about environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer demand for high-quality food products have led to increased interest in the development of biodegradable packaging materials using annually renewable natural biopolymers. Inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low barrier properties can be recovered by applying nanocomposite technology. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to large nanoparticle surface area and their significant aspect ratios. Additionally, natural biopolymer is susceptible to microorganisms, resulting in good biodegradability, which is one of the most promising aspects of its incorporation in packaging materials and industries. The present review article explains the various categories of nanoclay and bio-based polymer-based composites with particular regard to their application as packaging materials. It also gives an overview of the most recent advances and emerging new aspects of nanotechnology for development of composites for environmentally compatible food packaging materials.

Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Jawad Sarfraz ◽  
Tina Gulin-Sarfraz ◽  
Julie Nilsen-Nygaard ◽  
Marit Kvalvåg Pettersen

There is a strong drive in industry for packaging solutions that contribute to sustainable development by targeting a circular economy, which pivots around the recyclability of the packaging materials. The aim is to reduce traditional plastic consumption and achieve high recycling efficiency while maintaining the desired barrier and mechanical properties. In this domain, packaging materials in the form of polymer nanocomposites (PNCs) can offer the desired functionalities and can be a potential replacement for complex multilayered polymer structures. There has been an increasing interest in nanocomposites for food packaging applications, with a five-fold rise in the number of published articles during the period 2010–2019. The barrier, mechanical, and thermal properties of the polymers can be significantly improved by incorporating low concentrations of nanofillers. Furthermore, antimicrobial and antioxidant properties can be introduced, which are very relevant for food packaging applications. In this review, we will present an overview of the nanocomposite materials for food packaging applications. We will briefly discuss different nanofillers, methods to incorporate them in the polymer matrix, and surface treatments, with a special focus on the barrier, antimicrobial, and antioxidant properties. On the practical side migration issues, consumer acceptability, recyclability, and toxicity aspects will also be discussed.


2011 ◽  
Vol 117-119 ◽  
pp. 1137-1141
Author(s):  
Ling Yu Wang ◽  
Jun Yan Huang ◽  
Li Hua Cui

In order to study the characteristics of a new kind of high-barrier and high-temperature sterilization and easy tear flexible plastic packaging materials applied in food packaging, the PET/AL/CPP was chosen as flexible plastic packaging material structure, different PET, CPP, alcohol inks, adhesives and other raw materials were selected for making a series of processing technology experiment and detection analysis. Then comparing the data obtained with the requirements, it was concluded that new flexible plastic packaging materials were extremely high resistance oxygen and resistance wet, high-temperature sterilization and good one-way easy tear, and etc.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Markus Schmid ◽  
Kerstin Dallmann ◽  
Elodie Bugnicourt ◽  
Dario Cordoni ◽  
Florian Wild ◽  
...  

In case of food packaging applications, high oxygen and water vapour barriers are the prerequisite conditions for preserving the quality of the products throughout their whole lifecycle. Currently available polymers and/or biopolymer films are mostly used in combination with barrier materials derived from oil based plastics or aluminium to enhance their low barrier properties. In order to replace these non-renewable materials, current research efforts are focused on the development of sustainable coatings, while maintaining the functional properties of the resulting packaging materials. This article provides an introduction to food packaging requirements, highlights prior art on the use of whey-based coatings for their barriers properties, and describes the key properties of an innovative packaging multilayer material that includes a whey-based layer. The developed whey protein formulations had excellent barrier properties almost comparable to the ethylene vinyl alcohol copolymers (EVOH) barrier layer conventionally used in food packaging composites, with an oxygen barrier (OTR) of <2 [cm³(STP)/(m²d bar)] when normalized to a thickness of 100 μm. Further requirements of the barrier layer are good adhesion to the substrate and sufficient flexibility to withstand mechanical load while preventing delamination and/or brittle fracture. Whey-protein-based coatings have successfully met these functional and mechanical requirements.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2245
Author(s):  
Niaz Mahmud ◽  
Joinul Islam ◽  
Reza Tahergorabi

Marine sources are gaining popularity and attention as novel materials for manufacturing biopolymers such as proteins and polysaccharides. Due to their biocompatibility, biodegradability, and non-toxicity features, these biopolymers have been claimed to be beneficial in the development of food packaging materials. Several studies have thoroughly researched the extraction, isolation, and latent use of marine biopolymers in the fabrication of environmentally acceptable packaging. Thus, a review was designed to provide an overview of (a) the chemical composition, unique properties, and extraction methods of marine biopolymers; (b) the application of marine biopolymers in film and coating development for improved shelf-life of packaged foods; (c) production flaws and proposed solutions for better isolation of marine biopolymers; (d) methods of preparation of edible films and coatings from marine biopolymers; and (e) safety aspects. According to our review, these biopolymers would make a significant component of a biodegradable food packaging system, reducing the amount of plastic packaging used and resulting in considerable environmental and economic benefits.


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1702 ◽  
Author(s):  
Lina Han ◽  
Wentao Wang ◽  
Rui Zhang ◽  
Haizhou Dong ◽  
Jingyuan Liu ◽  
...  

Nanocellulose (NC) has attracted attention in recent years for the advantages offered by its unique characteristics. In this study, the effects of the preparation method on the properties of starch films were investigated by preparing NC from cationic-modified microcrystalline cellulose (MD-MCC) using three methods: Acid hydrolysis (AH), high-pressure homogenization (HH), and high-intensity ultrasonication (US). When MD-MCC was used as the starting material, the yield of NC dramatically increased compared to the NC yield obtained from unmodified MCC and the increased zeta potential improved its suspension stability in water. The NC prepared by the different methods had a range of particle sizes and exhibited needle-like structures with high aspect ratios. Fourier transform infrared (FTIR) spectra indicated that trimethyl quaternary ammonium salt groups were introduced to the cellulose backbone during etherification. AH-NC had a much lower maximum decomposition temperature (Tmax) than HH-NC or US-NC. The starch/HH-NC film exhibited the best water vapor barrier properties because the HH-NC particles were well-dispersed in the starch matrix, as demonstrated by the surface morphology of the film. Our results suggest that cationic NC is a promising reinforcing agent for the development of starch-based biodegradable food-packaging materials.


2016 ◽  
Vol 8 (40) ◽  
pp. 7387-7395 ◽  
Author(s):  
Xianghui Li ◽  
Ling Li ◽  
Yunlong Song ◽  
Huiliang Li ◽  
Zhenyu Zhu ◽  
...  

Barrier properties of common plastic packaging materials were efficiently evaluated using a permeation cup method with GC-MS, in order to prevent loss of volatile components in typical Chinese herbal medicines.


Sign in / Sign up

Export Citation Format

Share Document