Hydrogen bonding interactions in poly(ε-caprolactone–dimethyl siloxane–ε-caprolactone)/poly(hydroxyether of bisphenol A) triblock copolymer/homopolymer blends and the effect on crystallization, microphase separation and self-assembly

2015 ◽  
Vol 67 ◽  
pp. 12-20 ◽  
Author(s):  
Nisa V. Salim ◽  
Bronwyn L. Fox ◽  
Tracey L. Hanley
Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4705
Author(s):  
Boer Liu ◽  
Xi Chen ◽  
Glenn A. Spiering ◽  
Robert B. Moore ◽  
Timothy E. Long

This work reveals the influence of pendant hydrogen bonding strength and distribution on self-assembly and the resulting thermomechanical properties of A-AB-A triblock copolymers. Reversible addition-fragmentation chain transfer polymerization afforded a library of A-AB-A acrylic triblock copolymers, wherein the A unit contained cytosine acrylate (CyA) or post-functionalized ureido cytosine acrylate (UCyA) and the B unit consisted of n-butyl acrylate (nBA). Differential scanning calorimetry revealed two glass transition temperatures, suggesting microphase-separation in the A-AB-A triblock copolymers. Thermomechanical and morphological analysis revealed the effects of hydrogen bonding distribution and strength on the self-assembly and microphase-separated morphology. Dynamic mechanical analysis showed multiple tan delta (δ) transitions that correlated to chain relaxation and hydrogen bonding dissociation, further confirming the microphase-separated structure. In addition, UCyA triblock copolymers possessed an extended modulus plateau versus temperature compared to the CyA analogs due to the stronger association of quadruple hydrogen bonding. CyA triblock copolymers exhibited a cylindrical microphase-separated morphology according to small-angle X-ray scattering. In contrast, UCyA triblock copolymers lacked long-range ordering due to hydrogen bonding induced phase mixing. The incorporation of UCyA into the soft central block resulted in improved tensile strength, extensibility, and toughness compared to the AB random copolymer and A-B-A triblock copolymer comparisons. This study provides insight into the structure-property relationships of A-AB-A supramolecular triblock copolymers that result from tunable association strengths.


2020 ◽  
Vol 02 (01) ◽  
pp. 047-063 ◽  
Author(s):  
Nelson Ricardo Ávila-Rovelo ◽  
Amparo Ruiz-Carretero

Supramolecular approaches are of great interest in the design of functional materials. The types of aggregates arising from different noncovalent interactions endow materials with intriguing properties. In this sense, J-type aggregates are very attractive due to their unique optical properties and capacity to transport excitons. These features make them great candidates in the design of materials for organic electronic devices. Furthermore, the incorporation of additional hydrogen-bonding functionalities provides J-aggregates with superior directionality and connection among the different π-conjugated cores. The control over the formation of H-bonds to achieve functional aggregates is therefore a promising strategy towards controlled structures with specific functions.This review outlines the most relevant and recent works of π-conjugated systems exhibiting J-type aggregates resulting from hydrogen-bonding interactions. Different types of hydrogen-bonding functionalities will be discussed together with their roles in the aggregate properties, their impact in the optoelectronic properties, the self-assembly mechanisms, and their applications in organic electronics.


RSC Advances ◽  
2016 ◽  
Vol 6 (56) ◽  
pp. 51456-51469 ◽  
Author(s):  
Mohamed Gamal Mohamed ◽  
Jia-Huei Tu ◽  
Shih-Hung Huang ◽  
Yeo-Wan Chiang ◽  
Shiao-Wei Kuo

Hierarchical lamellae-within-lamellae structure for the PTyr/AzoPy-C16 supramolecular complex, featuring long-range-ordered lamellae arising from the PTyr within lamellae arising from AzoPy-C16 units oriented in a perpendicular manner.


2018 ◽  
Vol 74 (8) ◽  
pp. 889-893
Author(s):  
Qian-Kun Zhou ◽  
Lin Wang ◽  
Dong Liu

As a class of multifunctional materials, crystalline supramolecular complexes have attracted much attention because of their unique architectures, intriguing topologies and potential applications. In this article, a new supramolecular compound, namely catena-poly[4,4′-(buta-1,3-diene-1,4-diyl)dipyridin-1-ium [(μ4-benzene-1,2,4,5-tetracarboxylato-κ6 O 1,O 1′:O 2:O 4,O 4′:O 5)cadmium(II)]], {(C14H14N2)[Cd(C10H2O8)]} n or {(1,4-H2bpbd)[Cd(1,2,4,5-btc)]} n , has been prepared by the self-assembly of Cd(NO3)2·4H2O, benzene-1,2,4,5-tetracarboxylic acid (1,2,4,5-H4btc) and 1,4-bis(pyridin-4-yl)buta-1,3-diene (1,4-bpbd) under hydrothermal conditions. The title compound has been structurally characterized by IR spectroscopy, elemental analysis, powder X-ray diffraction and single-crystal X-ray diffraction analysis. Each CdII centre is coordinated by six O atoms from four different (1,2,4,5-btc)4− tetraanions. Each CdII cation, located on a site of twofold symmetry, binds to four carboxylate groups belonging to four separate (1,2,4,5-btc)4− ligands. Each (1,2,4,5-btc)4− anion, situated on a position of \overline{1} symmetry, binds to four crystallographically equivalent CdII centres. Neighbouring CdII cations interconnect bridging (1,2,4,5-btc)4− anions to form a three-dimensional {[Cd(1,2,4,5-btc)]2−} n anionic coordination network with infinite tubular channels. The channels are visible in both the [1\overline{1}0] and the [001] direction. Such a coordination network can be simplified as a (4,4)-connected framework with the point symbol (4284)(4284). To balance the negative charge of the metal–carboxylate coordination network, the cavities of the network are occupied by protonated (1,4-H2bpbd)2+ cations that are located on sites of twofold symmetry. In the crystal, there are strong hydrogen-bonding interactions between the anionic coordination network and the (1,4-H2bpbd)2+ cations. Considering the hydrogen-bonding interactions, the structure can be further regarded as a three-dimensional (4,6)-connected supramolecular architecture with the point symbol (4264)(42687·84). The thermal stability and photoluminescence properties of the title compound have been investigated.


2015 ◽  
Vol 6 (5) ◽  
pp. 721-731 ◽  
Author(s):  
Fei Li ◽  
Kevin G. Yager ◽  
Noel M. Dawson ◽  
Ying-Bing Jiang ◽  
Kevin J. Malloy ◽  
...  

Core–shell P3HT/fullerene composite nanofibers were obtained using supramolecular chemistry involving cooperative orthogonal non-covalent interactions.


2010 ◽  
Vol 82 (4) ◽  
pp. 917-929 ◽  
Author(s):  
Stefan Mohnani ◽  
Anna Llanes-Pallas ◽  
Davide Bonifazi

The controlled engineering of functional architectures composed of π-systems with unusual opto-electronic properties is currently being investigated intensively from both fundamental research and technological application viewpoints. In particular, the exploitation of the supramolecular approach for the facile construction of multidimensional architectures, featuring cavities capable of hosting functional molecules, could be used in several applications, such as nanomedicine, molecular-based memory storage devices, and sensors. This paper highlights our recent strategies to use hydrogen-bonding interactions to prepare nanostructured functional architectures via the self-assembly of organic molecular modules studied at different interfaces.


Sign in / Sign up

Export Citation Format

Share Document