scholarly journals Hydrolysis and drug release from poly(ethylene glycol)-modified lactone polymers with open porosity

2019 ◽  
Vol 113 ◽  
pp. 165-175 ◽  
Author(s):  
Sanja Asikainen ◽  
Kaarlo Paakinaho ◽  
Anna-Kaisa Kyhkynen ◽  
Markus Hannula ◽  
Minna Malin ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (26) ◽  
pp. 20025-20034 ◽  
Author(s):  
Yuling Li ◽  
Sai Wang ◽  
Dandan Zhu ◽  
Yuling Shen ◽  
Baixiang Du ◽  
...  

Reversibly shell cross-linked micelles based on a lipoic acid (LA) decorated triblock copolymer poly(ethylene glycol)-b-poly(γ-benzyl-l-glutamate)-b-poly(l-phenylalanine) have been developed for efficient intracellular delivery of DOX.


2013 ◽  
Vol 813 ◽  
pp. 399-402
Author(s):  
Chimsook Thitipha ◽  
Thitiphan Chimsook

The aim of present work was to prepare floating microsphere of ketoprofen using matrix polymer of chitosan and poly (ethylene glycol) by solvent diffusion method. The floating microsphere of ketoprofen was prepared from matrix polymer of chitosan and poly (ethylene glycol) with various composition ratios and evaluated such as particle size, drug compatibility and drug release of microspheres. The scanning electron microscopy of microspheres confirmed their hollow structures with smooth surface. Formulation CPK 4 to CPK 6 exhibited the best controlled release pattern in ketoprofen. The concentration and size of poly (ethylene-glycol) affected the particle size, percentage yield and drug release of microspheres.


2014 ◽  
Vol 38 (8) ◽  
pp. 3569-3578 ◽  
Author(s):  
Xiao-Hui Dai ◽  
Zhi-Ming Wang ◽  
Lu-You Gao ◽  
Jian-Ming Pan ◽  
Xiao-Hong Wang ◽  
...  

pH-induced block copolymer SPPLA-b-PEG with porphyrin core for photodynamic therapy.


2012 ◽  
Vol 1416 ◽  
Author(s):  
Christopher S. Brazel ◽  
James B. Bennett ◽  
Amanda L. Glover ◽  
Jacqueline A. Nikles ◽  
Maaike Everts ◽  
...  

ABSTRACTA thermally-activated micelle consisting of a crystallizable poly(caprolactone), PCL, core and a poly(ethylene glycol), PEG, corona was developed to contain magnetic nanoparticles and anti-cancer agent doxorubicin as well as display a targeting RGD peptide. This system has the potential to target cancer cells, deliver combination hyperthermia and chemotherapy, and offer magnetic resonance imaging contrast. The micelles self-assemble in aqueous solutions and form a crystalline core with a melting transition ranging from 40 to 50 °C, depending on the length of the PCL blocks, with dynamic light scattering showing micelle sizes typically ranging from 20 to 100 nm, depending on block lengths and added drug or nanoparticles. The micelles become unstable as they are heated above their melting point, creating a thermally-activated drug release mechanism. By adding magnetite (Fe3O4) nanoparticles into the PCL core, the micelles can be heated using an externally applied AC magnetic field to induce hyperthermia in combination with the thermally-activated drug release. The polymers and magnetic nanoparticles (MNPs) were synthesized and characterized in our laboratories. The melting transitions of the PCL micelle cores were investigated using microcalorimetry. The heating of nanoparticles and magnetomicelles was conducted using a custom-built hyperthermia coil capable of generating fields of several hundred Oersteds at frequencies ranging from 50 to 450 kHz. Heating of MNPs was maximized at high field intensities. RGD peptides were attached to the PEG corona using maleimide chemistry, and the ability of the RGD-derivatized micelles to target integrin-expressing cells was investigated using fluorescent dye PKH26 to identify the localization of micelles in cultured human kidney (293) cells in vitro. The crystallizable (and meltable) cores in these micelles were designed to overcome drug leakage common in liposome systems and release the drug on demand after a period of time for localization to integrin receptors.


2016 ◽  
Vol 4 (6) ◽  
pp. 1035-1039 ◽  
Author(s):  
Eric M. Nehls ◽  
Adrianne M. Rosales ◽  
Kristi S. Anseth

Photoresponsive azobenzene–cyclodextrin guest–host chemistry can be used to control the release rate of a small peptide from a PEG hydrogel with light.


Sign in / Sign up

Export Citation Format

Share Document