scholarly journals PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment

2016 ◽  
Vol 44 (10) ◽  
pp. 902-907 ◽  
Author(s):  
Lu Zhao ◽  
Chi Wai Eric So
2021 ◽  
Vol 17 (11) ◽  
pp. 2165-2175
Author(s):  
Xi Xu ◽  
Jian Wang ◽  
Tong Tong ◽  
Shao-Fen Lin ◽  
Congmin Liu ◽  
...  

Despite the continuous improvement of leukemia treatment in the clinic, the overall 5-year disease-free survival of acute myeloid leukemia (AML) is only approximately 30%–60% due to relapse and the refractoriness of AML after traditional chemotherapy. Inhibition of poly(ADP-ribose) polymerase (PARP), a member of the DNA damage repair complex, has a strong antitumor effect in solid tumors. However, the role of PARP in AML remains unclear. We found that high levels of PARP1 and PARP2 were positively related to chemotherapy resistance and poor prognosis in patients with AML. Doxorubicin (DOX)-resistant AML cells highly expressed PAPR1 and PARP2. Knockdown of PARP1 and PARP2, or pharmaceutical inhibition of PARP by the PARP inhibitor (PARPi) BGB-290, significantly enhanced the cytotoxicity of DOX in AML cells due to increased DNA damage. PLGA-loading BGB-290 was properly self-assembled into stable BGB-290@PLGA nanoparticles (NPs), which is uniform particle size and good stability. BGB-290@PLGA is easily uptake by AML cell lines and stays for a long time. Combined with DOX, BGB-290@PLGA can significantly improve the chemosensitivity of AML cell lines. Furthermore, BGB-290 and DOX combination treatment dramatically repressed the onset of leukemia and prolonged the survival of THP-1 xenografted mice. Overall, this study demonstrated that PARPi with traditional chemotherapy could be an efficient therapeutic strategy for AML.


Cancer ◽  
2021 ◽  
Author(s):  
Hagop M. Kantarjian ◽  
Tapan M. Kadia ◽  
Courtney D. DiNardo ◽  
Mary Alma Welch ◽  
Farhad Ravandi

2016 ◽  
Vol 87 (6) ◽  
pp. 927-935 ◽  
Author(s):  
Sorina Suarasan ◽  
Timea Simon ◽  
Sanda Boca ◽  
Ciprian Tomuleasa ◽  
Simion Astilean

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4151-4151
Author(s):  
Rakel Brendsdal Forthun ◽  
Emmet McCormack ◽  
Tanima Sengupta ◽  
Siv Lise Bedringaas ◽  
Øystein Bruserud ◽  
...  

Abstract Abstract 4151 Disease stabilisation, instead of cure, is proposed as the therapeutic strategy of choice in elderly or chemoresistant acute myeloid leukemia (AML). This approach may also be of particular benefit to patients for whom allogeneic bone marrow (re)transplantation is not an option. Previously, we have clinically investigated the addition of valproic acid (VPA) to various combination chemotherapies with initial results in AML indicating prolonged survival, with follow-up on a predominantly out-patient basis. Consequently, we aimed to identify further molecular targets of VPA, which may enhance its therapeutic efficacy through screening for VPA-modulated phosphoproteins in relevant preclinical models of AML, and validation of these targets in RNAi screen of Caenorhabditis elegans (C. elegans). Brown Norwegian Myeloid Leukemia (BNML) has previously been described as a particularly relevant preclinical rat model of AML. Indeed, leukemic rats treated with 170 mg/kg VPA twice-daily achieved therapeutic serum levels of VPA and demonstrated significant increases in survival in comparison to controls (p = 0.004). To screen for molecular targets of VPA effect in this responsive model, we investigated the differences in control and VPA treated BNML phosphoproteomes by difference gel electrophoresis (DIGE) separation and subsequent differential gel software analysis. This was achieved through harvest of phosphoproteins from leukemic blasts, isolated from the spleens of treated and control BNML rats by immobilized metal ion affinity chromatography (IMAC) and subsequent protein identification via Orbitrap mass-spectrometry. Significant differential expression of 9 phosphoproteins was found in VPA treated BNML rats compared to controls, including Tubulin α-1B chain (TBA1B) and Actin β (ACTB), indicating these genes as possible targets of VPA therapy. To validate the functionality of 7 of these genes, RNAi was performed in wild type Bristol N2 strain of C. elegans at larval stage L1, 24 hours prior to exposure to 15 mM VPA for 72 hours. Knockdown of 4 of 7 genes resulted in larval developmental arrest, defined as synthetic lethality. In order to ascertain if synthetic lethality induced by these 4 genes was resultant of apoptosis, we employed the CED-1::GFP transgenic reporter assay to quantify germline cell death following RNAi depletion and subsequent exposure to VPA (15 mM, 24 hours). Increased numbers of apoptotic corpses in the germline was determined for all genes examined. To further examine the role of p53 in the observed apoptotic induction we used the transgenic strain cep-1::CED-1::GFP, which expresses the C. elegans ortholog of p53, CEP-1. Successive RNAi knockdown of our 4 candidate genes, again effected increased basal number of apoptotic corpses independently of CEP-1. These results suggest that similar combinational treatment of AML may be beneficial, irrespective of p53 status. To further investigate this thesis in a human AML cell line, MOLM-13 cells were co-treated with VPA and small molecule inhibitors of prospective targets TBA1B and ACTB, namely paclitaxel, and cytochalasin B. Inhibition of actin polymerization or stabilisation of tubulin polymerization resulted in increased apoptosis when supplemented with VPA, as determined by DNA specific staining with Hoechst 33342. These results suggest that use of these combinations may be beneficial in the treatment of AML. In conclusion, this study indicates that phosphoproteomic screening of BNML and subsequent target verification in C. elegans worms has the potential to identify future drugable targets for effective combinatorial therapy with valproic acid in acute myeloid leukemia. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2083-2083
Author(s):  
Bing Xu ◽  
Yuanfei Shi ◽  
Long Liu ◽  
Bing Z Carter

BCL-2 inhibition exerts effective pro-apoptotic activities in acute myeloid leukemia (AML) but clinical efficacy as a monotherapy was limited in part due to the treatment-induced MCL-1 increase. Triptolide (TPL) exhibits anti-tumor activities in part by upregulating pro-apoptotic BCL-2 proteins and decreasing MCL-1 expression in various malignant cells. We hypothesized that combined BCL-2 inhibition and TPL exert synergistic anti-leukemia activities and prevent the resistance to BCL-2 inhibition in AML. We here report that TPL combined with BCL-2 inhibitor ABT-199 synergistically induced apoptosis in leukemic cells regardless of p53 status through activating the intrinsic mitochondrial apoptotic pathway in vitro. Although ABT-199 or TPL alone inhibited AML growth in vivo, the combination therapy demonstrated a significantly stronger anti-leukemic effect. Mechanistically, TPL significantly upregulated BH3 only proteins including PUMA, NOXA, BID and BIM and decreased MCL-1 but upregulated BCL-2 expression in both p53 wild type and p53 mutant AML cell lines, while the combination decreased both BCL-2 and MCL-1 and further increased BH3 only BCL-2 proteins. MCL-1 and BCL-2 increases associated with respective ABT-199 and TPL treatment and resistance were also observed in vivo. Significantly downregulating MCL-1 and elevating BH3 only proteins by TPL could not only potentially block MCL-1-mediated resistance but also enhance anti-leukemic efficacy of ABT-199. Conversely, BCL-2 inhibition counteracted the potential resistance of TPL mediated by upregulation of BCL-2. The combination further amplified the effect, which likely contributed to the synthetic lethality. This mutual blockade of potential resistance provides a rational basis for the promising clinical application of TPL and BCL-2 inhibition in AML independent of p53 status. Disclosures Carter: Amgen: Research Funding; AstraZeneca: Research Funding; Ascentage: Research Funding.


2021 ◽  
pp. 1-5
Author(s):  
Ali Amanati ◽  

Persistent marrow aplasia is a rare complication with poor prognosis after intensive chemotherapy for acute myeloid leukemia. We present a 14-year-old boy with acute myeloid leukemia (AML), was complicated by chemotherapy induced persistent aplasia and he was expired because of prolonged neutropenia and pulmonary Aspergilosis. In this review we explain causes of persistent post chemotherapy persistent aplasia and prevention of this phenomenon during treatment with consideration of minimal residual disease (MRD) and response to question about chemotherapy titration dose.


2021 ◽  
Author(s):  
Romy E. Weelderen ◽  
Festus Njuguna ◽  
Kim Klein ◽  
Saskia Mostert ◽  
Sandra Langat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document