Evaluation of Poly(ADP-ribose) Polymerase Inhibitor, Pamiparib (BGB-290) in Treating Acute Myeloid Leukemia and the Characterization of Its Nanocarrier

2021 ◽  
Vol 17 (11) ◽  
pp. 2165-2175
Author(s):  
Xi Xu ◽  
Jian Wang ◽  
Tong Tong ◽  
Shao-Fen Lin ◽  
Congmin Liu ◽  
...  

Despite the continuous improvement of leukemia treatment in the clinic, the overall 5-year disease-free survival of acute myeloid leukemia (AML) is only approximately 30%–60% due to relapse and the refractoriness of AML after traditional chemotherapy. Inhibition of poly(ADP-ribose) polymerase (PARP), a member of the DNA damage repair complex, has a strong antitumor effect in solid tumors. However, the role of PARP in AML remains unclear. We found that high levels of PARP1 and PARP2 were positively related to chemotherapy resistance and poor prognosis in patients with AML. Doxorubicin (DOX)-resistant AML cells highly expressed PAPR1 and PARP2. Knockdown of PARP1 and PARP2, or pharmaceutical inhibition of PARP by the PARP inhibitor (PARPi) BGB-290, significantly enhanced the cytotoxicity of DOX in AML cells due to increased DNA damage. PLGA-loading BGB-290 was properly self-assembled into stable BGB-290@PLGA nanoparticles (NPs), which is uniform particle size and good stability. BGB-290@PLGA is easily uptake by AML cell lines and stays for a long time. Combined with DOX, BGB-290@PLGA can significantly improve the chemosensitivity of AML cell lines. Furthermore, BGB-290 and DOX combination treatment dramatically repressed the onset of leukemia and prolonged the survival of THP-1 xenografted mice. Overall, this study demonstrated that PARPi with traditional chemotherapy could be an efficient therapeutic strategy for AML.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 8-9
Author(s):  
Sujan Piya ◽  
Marla Weetall ◽  
Josephine Sheedy ◽  
Balmiki Ray ◽  
Huaxian Ma ◽  
...  

Introduction: Acute myeloid leukemia (AML) is characterized by both aberrant proliferation and differentiation arrest at hematopoietic progenitor stages 1,2. AML relies upon de novo nucleotide synthesis to meet a dynamic metabolic landscape and to provide a sufficient supply of nucleotides and other macromolecules 3,4. Hence, we hypothesized that inhibition of de novo nucleotide synthesis would lead to depletion of the nucleotide pool and pyrimidine starvation in leukemic cells compared to their non-malignant counterparts and impact proliferative and differentiation inhibition pathways. PTC299 is an inhibitor of dihydroorotate dehydrogenase (DHODH), a rate limiting enzyme for de novo pyrimidine nucleotide synthesis that is currently in a clinical trial for the treatment of AML. Aim: We investigated the pre-clinical activity of PTC299 against AML in primary AML blasts and cytarabine-resistant cell lines. To confirm that PTC299 effects are due to inhibition of de novo pyrimidine nucleotide synthesis for leukemic growth, we specifically tested the impact of uridine and orotate rescue. In addition, a comprehensive analysis of alteration of metabolic signaling in PI3K/AKT pathways, apoptotic signatures and DNA damage responses were analyzed by Mass cytometry based proteomic analysis (CyTOF) and immunoblotting. The potential clinical relevance of DHODH inhibition was confirmed in an AML-PDX model. Results: The IC50s for all tested cell lines (at 3 day) and primary blasts (at 5-7 day) were in a very low nanomolar range: OCI-AML3 -4.43 nM, HL60 -59.7 nM and primary samples -18-90 nM. Treatment of AML in cytarabine-resistant cells demonstrated that PTC299 induced apoptosis, differentiation, and reduced proliferation with corresponding increase in Annexin V and CD14 positive cells (Fig.1). PTC299-induced apoptosis and inhibition of proliferation was rescued by uridine and orotate. To gain more mechanistic insights, we used an immunoblotting and mass cytometry (CyTOF) based approach to analyze changes in apoptotic and cell signaling proteins in OCI-AML3 cells. Apoptotic pathways were induced (cleaved PARP, cleaved Caspase-3) and DNA damage responses (TP53, γH2AX) and the PI3/AKT pathway were downregulated in response to PTC299. In isogenic cell lines, p53-wildtype cells were sustained and an increased DNA damage response with corresponding increase in apoptosis in comparison to p53-deficient cells was shown. (Fig.2) In a PDX mouse model of human AML, PTC299 treatment improved survival compared to mice treated with vehicle (median survival 40 days vs. 30 days, P=0.0002) (Fig.3). This corresponded with a reduction in the bone marrow burden of leukemia with increased expression of differentiation markers in mice treated with PTC299 (Fig.3). Conclusion: PTC299 is a novel dihydroorotate dehydrogenase (DHODH) inhibitor that triggers differentiation, apoptosis and/or inhibition of proliferation in AML and is being tested in a clinical trials for the treatment of acute myeloid malignancies. Reference: 1. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 2017; 129(12): 1577-1585. e-pub ahead of print 2017/02/06; doi: 10.1182/blood-2016-10-696054 2. Quek L, Otto GW, Garnett C, Lhermitte L, Karamitros D, Stoilova B et al. Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage. The Journal of experimental medicine 2016; 213(8): 1513-1535. e-pub ahead of print 2016/07/06; doi: 10.1084/jem.20151775 3. Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers (Basel) 2019; 11(5). e-pub ahead of print 2019/05/22; doi: 10.3390/cancers11050688 4. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv 2016; 2(5): e1600200. e-pub ahead of print 2016/07/08; doi: 10.1126/sciadv.1600200 Disclosures Weetall: PTC Therapeutic: Current Employment. Sheedy:PTC therapeutics: Current Employment. Ray:PTC Therapeutics Inc.: Current Employment. Konopleva:Genentech: Consultancy, Research Funding; Rafael Pharmaceutical: Research Funding; Ablynx: Research Funding; Ascentage: Research Funding; Agios: Research Funding; Kisoji: Consultancy; Eli Lilly: Research Funding; AstraZeneca: Research Funding; Reata Pharmaceutical Inc.;: Patents & Royalties: patents and royalties with patent US 7,795,305 B2 on CDDO-compounds and combination therapies, licensed to Reata Pharmaceutical; AbbVie: Consultancy, Research Funding; Calithera: Research Funding; Cellectis: Research Funding; Amgen: Consultancy; Stemline Therapeutics: Consultancy, Research Funding; Forty-Seven: Consultancy, Research Funding; F. Hoffmann La-Roche: Consultancy, Research Funding; Sanofi: Research Funding. Andreeff:Amgen: Research Funding; Daiichi-Sankyo; Jazz Pharmaceuticals; Celgene; Amgen; AstraZeneca; 6 Dimensions Capital: Consultancy; Daiichi-Sankyo; Breast Cancer Research Foundation; CPRIT; NIH/NCI; Amgen; AstraZeneca: Research Funding; Centre for Drug Research & Development; Cancer UK; NCI-CTEP; German Research Council; Leukemia Lymphoma Foundation (LLS); NCI-RDCRN (Rare Disease Clin Network); CLL Founcdation; BioLineRx; SentiBio; Aptose Biosciences, Inc: Membership on an entity's Board of Directors or advisory committees. Borthakur:BioLine Rx: Consultancy; BioTherix: Consultancy; Nkarta Therapeutics: Consultancy; Treadwell Therapeutics: Consultancy; Xbiotech USA: Research Funding; Polaris: Research Funding; AstraZeneca: Research Funding; BMS: Research Funding; BioLine Rx: Research Funding; Cyclacel: Research Funding; GSK: Research Funding; Jannsen: Research Funding; Abbvie: Research Funding; Novartis: Research Funding; Incyte: Research Funding; PTC Therapeutics: Research Funding; FTC Therapeutics: Consultancy; Curio Science LLC: Consultancy; PTC Therapeutics: Consultancy; Argenx: Consultancy; Oncoceutics: Research Funding.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2228-2228
Author(s):  
Xin Long ◽  
Laszlo Perlaky ◽  
Tsz-Kwong Chris Man ◽  
Michele S. Redell

Abstract Acute myeloid leukemia (AML) is a life-threatening bone marrow malignancy with a relapse rate near 50% in children, despite aggressive chemotherapy. Accumulating evidence shows that the bone marrow stromal environment protects a subset of leukemia cells and allows them to survive chemotherapy, eventually leading to recurrence. The factors that contribute to stroma-induced chemotherapy resistance are largely undetermined in AML. Our goal is to delineate the mechanisms underlying stroma-mediated chemotherapy resistance in human AML cells. We used two human bone marrow stromal cell lines, HS-5 and HS-27A, to study stroma-induced chemotherapy resistance. Both stromal cell lines are equally effective in protecting AML cell lines and primary samples from apoptosis induced by chemotherapy agents, including mitoxantrone, etoposide, and cytarabine. By gene expression profiling using the Affymetrix U133Plus 2 platform, we previously found that CYR61 was among the genes that were commonly upregulated in AML cells by both stromal cell lines. CYR61 is a secreted matricellular protein that is expressed at relatively low levels by AML cells, and at higher levels by stromal cells. CYR61 binds and activates integrins and enhances growth factor signaling in AML cells, and it has been associated with chemoresistance in other malignancies. Our current data provide functional evidence for a role for this protein in stroma-mediated chemoresistance in AML. First, we added anti-CYR61 neutralizing immunoglobulin (Ig), or control IgG, to AML-stromal co-cultures, treated with chemotherapy for 24 hours, and measured apoptosis with Annexin V staining and flow cytometry. In THP-1+HS-27A co-cultures treated with 50 nM mitoxantrone, the apoptosis rate was 33.0 ± 3.7% with anti-CYR61 Ig v. 16.3 ± 4.2% with control IgG; p=0.0015). Next, we knocked down CYR61 in the HS-5 and HS-27A stromal cell lines by lentiviral transduction of two individual shRNA constructs, and confirmed knockdown (KD) at the gene and protein levels for both cell lines. These CYR61-KD stromal cells provided significantly less protection for co-cultured AML cells treated with mitoxantrone, compared to stromal cells transduced with the non-silencing control. For example, the apoptosis rate for THP-1 cells co-cultured with CYR61-KD HS-27A cells was 10.8 ± 0.8%, compared to 6.8 ± 1.1% for THP-1 cells co-cultured with control HS-27A cells (p=0.02). Similar results were obtained with NB-4 AML cells. These results demonstrate that CYR61 contributes to stroma-mediated chemoresistance. CYR61 binds to integrin αvβ3 (Kireeva, et al, J. Biol. Chem., 1998, 273:3090), and this integrin activates spleen tyrosine kinase (Syk) (Miller, et al, Cancer Cell, 2013, 24:45). Using intracellular flow cytometry, we found that activated Syk (pSyk) increased in THP-1 and NB-4 cell lines, and in primary AML patient samples, upon exposure to control HS-27A cells. In primary samples, the mean fluorescence intensity (MFI) for pSyk averaged 11.7 ± 1.3 in co-culture v. 6.6 ± 0.6 for cells cultured alone (p=0.004, n=10). In contrast, pSyk did not significantly increase in AML cells co-cultured with CYR61-KD HS-27A cells (MFI for primary patient samples: 8.6 ± 0.8). This result implicates Syk as a downstream signaling mediator of CYR61. To determine the role of CYR61-induced Syk signaling in chemotherapy resistance, we treated AML-stromal cell co-cultures with 3 uM R406, a potent Syk inhibitor, or DMSO, then added 300 nM mitoxantrone, and measured apoptosis after 24 hours. In AML cells co-cultured with control HS-27A cells, mitoxantrone-induced apoptosis was significantly increased by Syk inhibition (THP-1 cells: 13.7 ± 0.7% with R406 v. 10.0 ± 0.3% with DMSO, p<0.05), consistent with reduced chemoresistance. Notably, R406 did not further increase mitoxantrone-induced apoptosis in AML cells co-cultured with CYR61-KD HS-27A stromal cells (THP-1 cells: 15.7 ± 0.2% with R406 v. 16.9 ± 0.4% with DMSO). Similar results were seen with NB-4 cells, as well. These results support the notion that CYR61 signals through the integrin-Syk pathway to protect AML cells from chemotherapy. Therefore, the CYR61 - integrin - Syk pathway may be a potential therapeutic target for overcoming stroma-induced chemotherapy resistance in AML. Disclosures No relevant conflicts of interest to declare.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Justin J. Montoya ◽  
Megan A. Turnidge ◽  
Daniel H. Wai ◽  
Apurvi R. Patel ◽  
David W. Lee ◽  
...  

Abstract Background Acute Myeloid Leukemia (AML) is a malignancy of myeloid precursor cells that arise from genomic alterations in the expression of key growth regulatory genes causing cells to assume an undifferentiated state and continue to proliferate. Recent efforts have focused on developing therapies that target specific protein products of aberrantly expressed genes. However, many of the identified proteins are difficult to target and thought to be “undrugable” because of structural challenges, protein overexpression, or mutations that confer resistance to therapy. A novel technology that circumvents some of these issues is the use of small molecules that stabilize secondary DNA structures present in the promoters of many potential oncogenes and modulate their transcription. Methods This study characterizes the in vitro activity of the G-quadruplex-stabilizing small molecule GQC-05 in AML cells. The effect of GQC-05 on three AML cell lines was analyzed using viability and apoptosis assays. GQC-05 has been shown to down-regulate MYC through G-quadruplex stabilization in Burkitt’s lymphoma cell lines. MYC expression was evaluated through qPCR and immunoblotting in the three AML cell lines following the treatment of GQC-05. In order to identify other therapeutic agents that potentiate the activity of GQC-05, combination drug screening was performed. The drug combinations were validated using in vitro cytotoxicity assays and compared to other commonly used chemotherapeutic agents. Results GQC-05 treatment of KG-1a, CMK and TF-1 cells decreased cell viability and resulted in increased DNA damage and apoptosis. Additionally, treatment of KG-1a, CMK and TF-1 with GQC-05 resulted in decreased expression of MYC mRNA and protein, with a more pronounced effect in KG-1a cells. Combination drug screening identified the Bcl-2/Bcl-XL inhibitor Navitoclax as a compound that potentiated GQC-05 activity. Co-treatment with GQC-05 and Navitoclax showed a synergistic decrease in cell viability of AML cells as determined by Chou-Talalay analysis, and induced more DNA damage, apoptosis, and rapid cytotoxicity. The cytotoxicity induced by GQC-05 and Navitoclax was more potent than that of Navitoclax combined with either cytarabine or doxorubicin. Conclusion These results suggest that the G-quadruplex stabilizing small molecule GQC-05 induces down regulated MYC expression and DNA damage in AML cells. Treatment with both GQC-05 with a Bcl-2/Bcl-XL inhibitor Navitoclax results in increased cytotoxic activity, which is more pronounced than Navitoclax or GQC-05 alone, and more significant than Navitoclax in combination with cytarabine and doxorubicin that are currently being used clinically.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4063-4063 ◽  
Author(s):  
Shiva Bamezai ◽  
Jing He ◽  
Deniz Sahin ◽  
Fabian Mohr ◽  
Fabio Ciccarone ◽  
...  

Abstract DNA methylation patterns are highly deregulated in human acute myeloid leukemia (AML) cases and stratify AML patient samples into different subgroup. AML1-ETO is the most commonly occurring fusion gene in AML and these AML cases exhibit an aberrant and distinct methylation pattern. So far, the underlying mechanisms for this are only poorly understood. The TET1 dioxygenase has recently emerged as an important epigenetic modifier: by catalyzing the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) TET1 plays an important role in active demethylation, thereby regulating a variety of biological processes. It was linked to tumorigenesis based on the observation that its expression is frequently deregulated in solid cancer. However, the role of TET1 in AML1-ETO+ (AE+)human AML cases is yet unexplored. Using quantitative real time (qRT)- PCR we now show that AE+ AML is characterized by high and aberrant expression of TET1: the gene was significantly higher expressed in the majority of AE+ patients (n=7, p<0.01) compared to other AML subtypes such as inv(16) (n=11), PML-RARα+ (n=31), cytogenetically normal (CN)-AML patients (n=33) and CD34+ normal BM cells (n=4). This observation was consistent with published cDNA microarray data on large patient cohorts (Haferlach et al., JCO 2010, p<0.008 t-test, p<0.01 Anova) and recently published transcriptome data (TCGA) of AML patients. In contrast to TET1, TET2 and TET3 did not show significant higher expression in AE+ patients compared to other AML subtypes. In line with patient data, TET1 was highest expressed in the AE+ AML cell line KASUMI-1 and SKNO-1 compared to other AML cell lines (p<0.05 and n=3). Compared to normal CD34+ and myeloid (CD33+, CD15+ and CD14+) cells (n=3), TET1 was 10-fold and 16-fold higher expressed in AE+ patient samples (n= 7). Aberrant expression of TET1 in AE+ leukemic cells was associated with hypomethylation of its promoter and enrichment for H3K4me3 euchromatic marks at its promoter as determined by LC/MS and ChIP-qPCR respectively. Knockdown (KD) of TET1 mRNA using two short hairpin RNAs (shRNAs) in AE+ AML cell lines impaired their cell growth and clonogenicity by over 50% in vitro (n=3 and p<0.01). shRNA mediated depletion of TET1 did not impact the cell growth and clonogenicity of the TET1 negative cell line RAJI, ruling out off target effects of the shRNAs (n=3). In mice, KD of Tet1 in leukemic bone marrow cells expressing the truncated leukemogenic AML1-ETO9a (AE9a) fusion, dramatically inhibited cell growth (>60% compared to scrambled, n=3, p<0.01), clonogenicity (>50-70% reduction in primary CFCs, p<0.01, n=3) and importantly delayed onset of leukemia in vivo (median survival 35 days for scr vs 80 days for shRNA mice, n=4/arm, p<0.03). Tet1-knock-out c-kit+ hematopoietic stem and progenitor cells (HSPCs) transduced with AE9a showed reduced primary colony formation and impaired serial replanting capacity in vitro compared to AE9a transduced Tet1-wild-type HSPCs (>50% and >70%, respectively; p<0.001, n=3). Global analysis of 5hmC and 5mC levels using hMeDIP/MeDIP-seq performed on TET1 depleted KASUMI-1 cells revealed lower global 5hmC levels and increase in 5mC as compared to cells transduced with scrambled control (n=2). 3324 promoter regions lost 5hmC and gained 5mC upon TET1 depletion (-5kTSS, Fold enrichment cut off <2-fold, q-value<1e5). Recent studies have shown that PARP activity induces TET1 expression by regulating its promoter epigenetically. We could show that aberrant TET1 expression could be antagonized by the PARP inhibitor olaparib in AE+ leukemic cell lines. Furthermore, olaparib treatment decreased 5hmC levels and reduced cell growth and clonogenicity of human AE+ cell lines and of the murine AE9a+ leukemic cell line in vitro (n=3, p<0.01). In conclusion, our data indicates that aberrant TET1 expression contributes to the growth of AE+ AML by maintaining the 5-hydroxymethylome and that the PARP inhibitor olaparib can at least partially antagonize the oncogenic effect of TET in AML. Disclosures Mulaw: NuGEN: Honoraria. Buske:Celltrion, Inc.: Consultancy, Honoraria.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5041-5041
Author(s):  
Jie Jin ◽  
Jie Jin ◽  
Jiajia Pan ◽  
Yungui Wang ◽  
Shujuan Huang ◽  
...  

Acute myeloid leukemia (AML) is a highly heterogeneous disease with poor clinical prognosis, especially to cytogenetically normal AML(CN-AML)patients, which belong to moderate prognosis group. The clinical outcomes of them are not consistent. Therefore, further exploration of novel biomarkers and development of new anti-tumor drugs is urgently needed. Recently, accumulating evidence have emerged and demonstrated that branched-chain amino acids (BCAA) are essential for tumor growth and proliferation. Branched-chain aminotransferase 1(BCAT1), a BCAA metabolic enzyme, which correlates with cancer aggression, not only that, it has been reported that overexpression of BCAT1in leukemia cells decreased intracellular αKG levels, showed the characteristics of stem cells and displayed a phenotype like cases carrying IDH mutations. By limiting intracellular αKG, BCAT1high expression AML cells prone to cause an increase in DNA damage probably via suppressing homologous recombination. We firstly analyzed the prognostic significance of BCAT1expression in CN-AML patients. Collectively, we found that patients with high levels of BCAT1had poor prognosis, the median overall survival time is shorter in BCAT1high group (356 days versus 570 days)(Figure A). Next, we performed gene knockout in THP-1 and MV4-11 cells with relatively high expression of BCAT1and gene overexpressing in the relatively low expression cell line OCI-AML3. In summary, BCAT1overexpression contributed to cell growth, whereas suppression of BCAT1markedly limited cell proliferation and colony-forming ability by blocking cell circle at G0/G1 phase(Figure B and C).The mice model we conducted further validated the role of BCAT1expression in vitro. Notably, we found that knockout and overexpression of BCAT1can respectively reduce and enhance the tumor burden(Figure D)and effects the time of survival(Figure E). Because both BCAT1high expression and IDH mutation could decrease αKG levels and suppress αKG dependent dioxygenases, it is tempting to speculate that there is a possibility of a "BRCAness" phenotype when BCAT1is overexpressed.We indeed observed a rise in the base line level of DNA damage marker γ-H2AX in BCAT1overexpressing cell line(Figure F). In addition, the sensitivity of cells to cisplatin is also positively correlated with BCAT1expression levels, the IC50 of BCAT1overexpressing cell line OCI-AML3 is much lower than control. Consistently, knocking out of BCAT1decreased sensitivity to cisplatin. So we further tested the relationship between PARPi talazoparib(BMN 673) and BCAT1expression, Use a gain of function approach we increased susceptibility to PARPi, together with the loss of function data, these results strongly suggest that BCAT1promotes cell sensitivity to PARPi(Figure G). We believe that the combination of high expression of BCAT1and PARPi produces synthetic lethality. In addition, the ability to trap PARP1 of PARPi may produce unacceptable toxicity when combined with conventional doses of cytotoxic chemotherapies. So, we next combined PARP inhibitors with DNA-damaging agent daunorubicin, the synergistic effect is promising on BCAT1overexpressed OCI-AML3 cell especially at high dose, however, the synergistic effect of the control group is weak, sometimes even manifested as antagonistic.Consistent with previous reports, IDH1/2mutAML is vulnerable to PARP inhibition as monotherapy, but especially when combined with daunorubicin treatment. These results also confirmed our hypothesis that BCAT1overexpression mimics the phenotype of IDHmutcells, not only as DNA hypermethylation, but also leads to increased DNA damage levels in cells, increasing sensitivity to PARP inhibitor and DNA-damaging drugs. Through qPCR and WB assays, we found the same trend: DNA damage response-related protein ATM was down-regulated after BCAT1overexpression, which preliminarily explained why DNA damage was increased after BCAT1overexpression. After exogenous supplementation with the aKG analog DM-aKG, the enhancement of DNA damage caused by overexpression of BCAT1can be reversed. In summary, this study indicated that CN-AML patients with high BCAT1expression had poor prognosis. BCAT1plays the role as oncogene, can induce DNA damage that renders AML cells sensitive to PARP inhibition and DNA damage agents, and can be used as a novel therapeutic option for AML. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3836-3836
Author(s):  
J. Timothy Caldwell ◽  
Steven A Buck ◽  
Yubin Ge ◽  
Jeffrey W Taub

Abstract Approximately one seventh of pediatric acute myeloid leukemia (AML) patients also have Down Syndrome (DS), or constitutional trisomy 21. DS AML is considered to be a unique disease from non-DS AML, due in part to a high prevalence of somatic GATA1 mutations and a megakaryocytic phenotype (AMKL). In contrast to the non-DS population, DS AML is generally associated with a very favorable prognosis. However, treatment of this disease is not without complications. Adverse drug effects are significant within this population, especially with up to half of patients possessing congenital heart abnormalities. Furthermore, for those patients who suffer either an induction failure or relapse, prognoses are dismal (Taga T. et al., Blood, 120: 1810-1815, 2012) including the outcomes after stem cell transplant (Hitzler JK. et al., Biol Blood Marrow Transplant, 19:893-897, 2013). Therefore, less toxic and more efficacious therapies are needed for this population. Recently, chemotherapeutic targeting of cell cycle checkpoints has emerged as an exciting possibility, with many clinical trials underway. The wee1 kinase has been identified as a potential target in many malignancies, including leukemia. It is responsible for inhibiting CDK1 and CDK2 by adding phosphate groups at amino acid residue tyrosine 15 (Y15), which is necessary for subsequent checkpoint activation by checkpoint proteins (e.g. CHK1). The development of a wee1-specific inhibitor, MK-1775, has allowed investigations into its use alone or in combination with classical chemotherapeutics as treatment for many types of cancer, with favorable results thus far. However, there is some controversy with regards to the mechanism by which it enhances cell death. In this preclinical work we used DS AML cell lines to investigate the potential use of MK-1775, both alone and in combination with cytarabine, to improve outcomes in DS AML patients. The two cell lines, CMK and CMY, were derived from DS AMKL patients and both harbor GATA1 mutations. CMK was derived from a patient who relapsed after initial treatment and CMY was derived from a patient who experienced an induction failure. The CMY line displays significant resistance to multiple different classes of chemotherapy drugs including nucleoside agents (e.g. cytarabine) and anthracyclines. We found that MK-1775 alone was able to cause growth inhibition and apoptosis at clinically relevant doses in both cell lines, independent of sensitivity to cytarabine or other agents. This effect was greatly enhanced by the addition of cytarabine. Addition of 250nM MK-1775 was able to reduce the cytarabine IC50 9- and 45-fold in CMK and CMY cells, respectively. Combination indices (CI) for this combination ranged from 0.66-0.95 and 0.50-0.94 in CMK and CMY, respectively.The combination of MK-1775 and cytarabine was able to synergistically induce apoptosis as measured by annexinV/propidium iodide (PI) staining. Addition of MK-1775 was able to decrease inhibitory CDK1 and CDK2 Y15 phosphorylation induced by cytarabine treatment. Interestingly, treatment with MK-1775 increased DNA damage induced by cytarabine as measured by γH2AX signal on western blots. Furthermore, this damage was induced primarily in S-phase, as measured by γH2AX/PI dual-staining and flow-cytometry. Finally, to aid with the clinical translation of this work, the dose- and time-dependency of MK-1775 treatment on CDK1 and CDK2 Y15 phosphorylation was determined. Briefly, even low doses (100nM) of MK-1775 were able to reduce CDK1 and CDK2 Y15 phosphorylation after only four hours. However, this inhibitory phosphorylation was able to return after only 1 hour, suggesting that treatment with MK-1775 must be continued during cytarabine therapy. In conclusion, these data support the combination of MK-1775 and cytarabine for the treatment of DS AML, including possible relapsed/refractory cases which have a very poor prognosis. Combining MK-1775 with cytarabine was able to synergistically induce apoptosis in both cell lines, possibly by increasing DNA damage and decreasing inhibition of CDK1 and CDK2. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (14) ◽  
pp. 5084
Author(s):  
Fabian Freisleben ◽  
Lena Behrmann ◽  
Vanessa Thaden ◽  
Jana Muschhammer ◽  
Carsten Bokemeyer ◽  
...  

Aberrant activation of the hedgehog (HH) pathway is observed in many neoplasms, including acute myeloid leukemia (AML). The glioma-associated oncogene homolog (GLI) transcription factors are the main downstream effectors of the HH signaling cascade and are responsible for the proliferation and maintenance of leukemic stem cells, which support chemotherapy resistance and leukemia relapse. Cytarabine (Ara-C)-resistant variants of AML cell lines were established through long-term cultivation with successively increasing Ara-C concentrations. Subsequently, differences in GLI expression were analyzed by RT-qPCR. GLI3 mRNA levels were detectable in parental Kasumi-1, OCI-AML3, and OCI-AML5 cells, whereas GLI3 expression was completely silenced in all resistant counterparts. Therefore, we generated GLI3-knockdown cell lines using small hairpin RNAs (shRNA) and evaluated their sensitivity to Ara-C in vitro. The knockdown of GLI3 partly abolished the effect of Ara-C on colony formation and induction of apoptosis, indicating that GLI3 downregulation results in Ara-C resistance. Moreover, we analyzed the expression of several genes involved in Ara-C metabolism and transport. Knockdown of GLI3 resulted in the upregulation of SAM and HD domain-containing protein 1 (SAMHD1), cytidine deaminase (CDA), and ATP-binding cassette C11 (ABCC11)/multidrug resistance-associated protein 8 (MRP8), each of which has been identified as a predictive marker for Ara-C response in acute myeloid leukemia. Our results demonstrate that GLI3 downregulation is a potential mechanism to induce chemotherapy resistance in AML.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2469-2469
Author(s):  
Jianyun Zhao ◽  
Xiaojia Niu ◽  
Holly Edwards ◽  
Yue Wang ◽  
Jeffrey W Taub ◽  
...  

Abstract Acute myeloid leukemia (AML) remains a challenging disease to treat in both pediatric and adult populations. Resistance to cytarabine (ara-C) and anthracycline [e.g., daunorubicin (DNR)]-based chemotherapy is a major cause of treatment failure in this disease. Therefore, more effective therapies are urgently needed to improve treatment outcome of AML patients. Anti-apoptotic Bcl-2 family proteins play key roles in the apoptosis pathway. Overexpression of these proteins is associated with chemoresistance and poor clinical outcome. Thus, much attention has been focused on inhibition of the anti-apoptotic Bcl-2 family proteins for the treatment of various malignancies. ABT-199 is a selective Bcl-2 inhibitor that has demonstrated promising results in CLL, as well as other malignancies including AML. We previously demonstrated that ABT-199 has a wide range of activity in AML cells. In addition, we have also identified that the anti-apoptotic protein Mcl-1, in conjunction with the pro-apoptotic protein Bim, is a key player in resistance to ABT-199 in AML cells. Thus, combining ABT-199 with agents that downregulate Mcl-1 could overcome the intrinsic resistance to ABT-199. Checkpoint kinase 1 (CHK1) is a protein kinase which plays a central role in the DNA damage response (DDR). The DDR represents a complex network of multiple signaling pathways involving cell cycle checkpoints, DNA repair, transcriptional programs, and apoptosis, through which cells maintain genomic integrity following various endogenous or environmental stresses. Inhibition of CHK1 has been demonstrated to induce DNA damage. We and others have also demonstrated that DNA damage results in downregulation of Mcl-1. Thus, it is conceivable that targeting CHK1 may enhance the cytotoxic effects of ABT-199 on AML cells through downregulation of Mcl-1. In this study, we investigated the combination of LY2603618, a CHK1-selective inhibitor, and the Bcl-2 inhibitor ABT-199 in AML cell lines and primary patient samples. We demonstrated that LY2603618 inhibited proliferation of AML cell lines (n=11) and diagnostic blasts (n=26). Interestingly, all 11 AML cell lines and 23 out of the 26 primary AML patient samples tested showed a LY2603618 IC50 lower than the Cmax of LY2603618 (~9 µM) determined in Phase I clinical studies. Annexin V and propidium iodide (PI) staining and flow cytometry analyses revealed that LY2603618 induced Bak-dependent apoptosis in AML cells. As expected, treatment of AML cells with LY2603618 resulted in abolishment of G2 cell cycle check point and DNA double strand breaks (DSBs), which could be, at least partially, blocked by a CDK inhibitor, roscovitine. LY2603618 treatment also resulted in downregulation of Mcl-1, which coincided with the initiation of apoptosis. Overexpression of Mcl-1 in AML cells significantly attenuated apoptosis induced by LY2603618, confirming the critical role of Mcl-1 in apoptosis induced by the agent. Consistent with our hypothesis, simultaneous combination of LY2603618 and ABT-199 resulted in synergistic induction of apoptosis in both AML cell lines and primary patient samples. Our results demonstrate that LY2603618 synergizes with ABT-199 in AML cells. Our findings provide new insights into overcoming the mechanism of ABT-199 resistance in AML cells and support the clinical development of the combination of ABT-199 and CHK1 inhibitors. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1375-1375 ◽  
Author(s):  
Michele Cea ◽  
Antonia Cagnetta ◽  
Davide Lovera ◽  
Raffaella Grasso ◽  
Nicoletta Colombo ◽  
...  

Abstract Background: Acute Myeloid Leukemia (AML) is an incurable disease characterized by a highly unstable genome, resulting in large-scale changes at diagnosis, as well as further evolution contributing to disease progression. However, the mechanisms whereby tumor cells adapt to genomic instability are largely unknown, but recent observations have correlated these abnormalities with dysfunctional DNA damage repair (DDR) machinery. SIRT6 is an important regulator of cellular stress response and genomic integrity. Here we investigated the role of this NAD+ -dependent deacetylase in regulating ongoing DNA damage observed in AML patients. Methods: SIRT6 mRNA level was determined by RT-qPCR in AML patients (n=100) diagnosed at the Hematology Department of University of Genoa (Italy), compared with normal bone marrow derived CD34+ cells (n=5). Correlation studies with clinical and molecular characteristics of these patients were also performed. A panel of different AML cell lines and primary cells, both sensitive and resistant to conventional and novel anti-AML therapies, was used in the study. The anti-leukemic effect of DNA-damaging agents (DDAs) including idarubicin, Ara-C and fludarabine was evaluated in presence of SIRT6 depletion/inhibition by CTG assay and Annexin-V/propidium iodide staining. Mechanistic studies were performed with Western-blotting, lentivirus-mediated shRNAs and immunofluorescence assay. Analysis of DNA DSB repair was done using chromosomally integrated reporter constructs, followed by cytometer analysis. Results: AML patients were grouped into lower and higher SIRT6 expressers according to its median mRNA level. Patients with lower expression had a higher incidence of FLT3-ITD (p=0.034, Wilcoxon signed rank test). No significant association was observed with respect to mutations of NPM1, nor with WT1 and BAALC expression. SIRT6 expression correlated also with adverse clinical outcome in term of event free and overall survival (p=0.035 and p=0.025, respectively; unpaired t test). Based on these data, we evaluated SIRT6 role in biology of AML. We found higher SIRT6 protein level in AML cell lines carrying FLT3-ITD mutation (MOLM-14 and MV 4-11) compared to cell lines harboring other mutations (OCI-AML3, THP-1, KG, NB4, HL60, Nomo1 and U937). Targeting SIRT6 by specific shRNAs weakly reduced AML cell survival compared with control-scrambled cells, by impairing DNA repair efficiency. Indeed, a restricted effect of SIRT6 impairment on DNA damage proteins (H2AX, RAD51, 53BP1, RPA32) was measured. We next examined the therapeutic relevance of SIRT6 inhibition in AML by testing effects of its depletion in combination with genotoxic agents. Remarkably, SIRT6 depletion conferred increased sensitivity of AML cells to idarubicin, Ara-C and Fludarabine. Overall, enhancing genotoxic stress while concomitantly blocking DNA double-strand breaks (DSBs) repair response, may represents an innovative strategy to increase chemosensitivity of AML cells. Further mechanistic studies revealed that SIRT6 acts as a genome guardian in leukemia cells by binding DNA damage sites and activating DNA-PKcs and CtIP by deacetylation, which in turn promotes DNA repair. Conclusion: Genomic instability is present in all hematologic malignancies including AML. Strategies aimed to shift the balance towards high DNA damage and reduced DNA repair by SIRT6 inhibition can decrease AML growth and may benefit patients with otherwise unfavorable outcomes. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document