BMP signaling initiates a neural crest differentiation program in embryonic rat CNS stem cells

2004 ◽  
Vol 188 (2) ◽  
pp. 205-223 ◽  
Author(s):  
Shyam Gajavelli ◽  
Patrick M. Wood ◽  
Diane Pennica ◽  
Scott R. Whittemore ◽  
Pantelis Tsoulfas
Development ◽  
1998 ◽  
Vol 125 (24) ◽  
pp. 5055-5067 ◽  
Author(s):  
J.P. Liu ◽  
T.M. Jessell

The differentiation of neural crest cells from progenitors located in the dorsal neural tube appears to involve three sequential steps: the specification of premigratory neural crest cell fate, the delamination of these cells from the neural epithelium and the migration of neural crest cells in the periphery. BMP signaling has been implicated in the specification of neural crest cell fate but the mechanisms that control the emergence of neural crest cells from the neural tube remain poorly understood. To identify molecules that might function at early steps of neural crest differentiation, we performed a PCR-based screen for genes induced by BMPs in chick neural plate cells. We describe the cloning and characterization of one gene obtained from this screen, rhoB, a member of the rho family GTP-binding proteins. rhoB is expressed in the dorsal neural tube and its expression persists transiently in migrating neural crest cells. BMPs induce the neural expression of rhoB but not the more widely expressed rho family member, rhoA. Inhibition of rho activity by C3 exotoxin prevents the delamination of neural crest cells from neural tube explants but has little effect on the initial specification of premigratory neural crest cell fate or on the later migration of neural crest cells. These results suggest that rhoB has a role in the delamination of neural crest cells from the dorsal neural tube.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Manuel Pedro Jimenez-García ◽  
Antonio Lucena-Cacace ◽  
Daniel Otero-Albiol ◽  
Amancio Carnero

AbstractThe EMX (Empty Spiracles Homeobox) genes EMX1 and EMX2 are two homeodomain gene members of the EMX family of transcription factors involved in the regulation of various biological processes, such as cell proliferation, migration, and differentiation, during brain development and neural crest migration. They play a role in the specification of positional identity, the proliferation of neural stem cells, and the differentiation of certain neuronal cell phenotypes. In general, they act as transcription factors in early embryogenesis and neuroembryogenesis from metazoans to higher vertebrates. The EMX1 and EMX2’s potential as tumor suppressor genes has been suggested in some cancers. Our work showed that EMX1/EMX2 act as tumor suppressors in sarcomas by repressing the activity of stem cell regulatory genes (OCT4, SOX2, KLF4, MYC, NANOG, NES, and PROM1). EMX protein downregulation, therefore, induced the malignance and stemness of cells both in vitro and in vivo. In murine knockout (KO) models lacking Emx genes, 3MC-induced sarcomas were more aggressive and infiltrative, had a greater capacity for tumor self-renewal, and had higher stem cell gene expression and nestin expression than those in wild-type models. These results showing that EMX genes acted as stemness regulators were reproduced in different subtypes of sarcoma. Therefore, it is possible that the EMX genes could have a generalized behavior regulating proliferation of neural crest-derived progenitors. Together, these results indicate that the EMX1 and EMX2 genes negatively regulate these tumor-altering populations or cancer stem cells, acting as tumor suppressors in sarcoma.


Neuron ◽  
2002 ◽  
Vol 35 (4) ◽  
pp. 657-669 ◽  
Author(s):  
Genevieve M. Kruger ◽  
Jack T. Mosher ◽  
Suzanne Bixby ◽  
Nancy Joseph ◽  
Toshihide Iwashita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document