Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways

2019 ◽  
Vol 313 ◽  
pp. 60-78 ◽  
Author(s):  
Qingfeng Xie ◽  
Jingyan Cheng ◽  
Guoyuan Pan ◽  
Shamin Wu ◽  
Quan Hu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Bai-liu Ya ◽  
Qian Liu ◽  
Hong-fang Li ◽  
Hong-ju Cheng ◽  
Ting Yu ◽  
...  

The aim of this study was to investigate whether uric acid (UA) might exert neuroprotection via activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and regulating neurotrophic factors in the cerebral cortices after transient focal cerebral ischemia/reperfusion (FCI/R) in rats. UA was intravenously injected through the tail vein (16 mg/kg) 30 min after the onset of reperfusion in rats subjected to middle cerebral artery occlusion for 2 h. Neurological deficit score was performed to analyze neurological function at 24 h after reperfusion. Terminal deoxynucleotidyl transferase-mediated dNTP nick end labeling (TUNEL) staining and hematoxylin and eosin (HE) staining were used to detect histological injury of the cerebral cortex. Malondialdehyde (MDA), the carbonyl groups, and 8-hydroxyl-2′-deoxyguanosine (8-OHdG) levels were employed to evaluate oxidative stress. Nrf2 and its downstream antioxidant protein, heme oxygenase- (HO-) 1,were detected by western blot. Nrf2 DNA-binding activity was observed using an ELISA-based measurement. Expressions of BDNF and NGF were analyzed by immunohistochemistry. Our results showed that UA treatment significantly suppressed FCI/R-induced oxidative stress, accompanied by attenuating neuronal damage, which subsequently decreased the infarct volume and neurological deficit. Further, the treatment of UA activated Nrf2 signaling pathway and upregulated BDNF and NGF expression levels. Interestingly, the aforementioned effects of UA were markedly inhibited by administration of brusatol, an inhibitor of Nrf2. Taken together, the antioxidant and neuroprotective effects afforded by UA treatment involved the modulation of Nrf2-mediated oxidative stress and regulation of BDNF and NGF expression levels. Thus, UA treatment could be of interest to prevent FCI/R injury.


2010 ◽  
Vol 38 (03) ◽  
pp. 517-527 ◽  
Author(s):  
Yan-Yan Yin ◽  
Wei-Ping Li ◽  
Hui-Ling Gong ◽  
Fen-Fang Zhu ◽  
Wei-Zu Li ◽  
...  

This study was to observe the neurological protective effects of astragalosides (AST) on focal cerebral ischemia-reperfusion (I/R) injury in rats and to explore its possible mechanism. Male SD rats received right middle cerebral artery occlusion for 120 min and AST (40 mg/kg) was orally administered. The rats were decapitated 1, 3, 7, and 14 days after reperfusion. The neurological deficit score, infarct volume and water content of brain were measured; the activity of superoxide dismutase (SOD), lactate dehydrogenase (LDH) and nitric oxide synthase (NOS), and the content of malondialdehyde (MDA), lactate (LD) and nitric oxide (NO) of brain tissue were detected too. The expression of inducible nitric synthase (iNOS), nerve growth factor (NGF) and tropomyosin receptor kinase A (TrkA) mRNA were measured by RT-PCR or real-time PCR. AST could significantly reduce the neurological deficit score; infract volume and water content, increase SOD and LDH activities, decrease NOS activity and MDA, LD and NO content. AST treatment could down-regulate expression of iNOS mRNA, while, NGF and TrkA mRNA were up-regulated. Our data suggest that AST have the protective effects on focal cerebral ischemia in rats at the different reperfusion time points, the mechanism may be related to the antioxidation, regulated the expressions of iNOS, NGF and TrkA mRNA.


Sign in / Sign up

Export Citation Format

Share Document