Theoretical and experimental analysis of a multiphase screw pump, handling gas–liquid mixtures with very high gas volume fractions

2008 ◽  
Vol 32 (8) ◽  
pp. 1694-1701 ◽  
Author(s):  
K. Räbiger ◽  
T.M.A. Maksoud ◽  
J. Ward ◽  
G. Hausmann
Author(s):  
Gerald L. Morrison ◽  
Abhay Patil ◽  
Daniel Cihak

The use of multiphase pumps on gas and oil wells which have Gas Volume Fractions (GVF) between 50 and 100% have been shown to have practical applications[1]. A single multiphase pump can replace a separation system, gas compressor, and liquid pump. This can significantly reduce installation cost, maintenance cost, and the space occupied by the system. By reducing the well head pressure, additional production can also be obtained. This work investigates the ability of a 200 hp, 635 gpm twin screw pump designed for use as a multiphase pump to operate over a range of gas volume fractions, inlet pressure, pressure rise, and operating speed. GVF’s from 50% to 100% are considered with inlet pressures from 15 to 100 psig. The pump pressure rise is varied from 50 to 300 psig for operating speeds of 900, 1350, and 1800 rpm. The working fluids for this evaluation are air and water. Each are separately measured prior to injection into the pump inlet. Electrical power consumed along with pressure and temperature measurements across the pump allow the evaluation of pump efficiency, hydraulic performance, volumetric efficiency, and effectiveness (reduction in hydraulic efficiency from pure liquid performance).


2021 ◽  
Vol 15 ◽  
pp. 223-232
Author(s):  
Sharul Sham Dol ◽  
Niraj Baxi ◽  
Mior Azman Meor Said

By introducing a multiphase twin screw pump as an artificial lifting device inside the well tubing (downhole) for wet gas compression application; i.e. gas volume fraction (GVF) higher than 95%, the unproductive or commercially unattractive gas wells can be revived and made commercially productive once again. Above strategy provides energy industry with an invaluable option to significantly reduce greenhouse gas emissions by reviving gas production from already existing infrastructure thereby reducing new exploratory and development efforts. At the same time above strategy enables energy industry to meet society’s demand for affordable energy throughout the critical energy transition from predominantly fossil fuels based resources to hybrid energy system of renewables and gas. This paper summarizes the research activities related to the applications involving multiphase twin screw pump for gas volume fraction (GVF) higher than 95% and outlines the opportunity that this new frontier of multiphase fluid research provides. By developing an understanding and quantifying the factors that influence volumetric efficiency of the multiphase twin screw pump, the novel concept of productivity improvement by a downhole wet gas compression using above technology can be made practicable and commercially more attractive than other production improvement strategies available today. Review and evaluation of the results of mathematical and experimental models for multiphase twin screw pump for applications with GVF of more than 95% has provided valuable insights in to multiphase physics in the gap leakage domains of pump and this increases confidence that novel theoretical concept of downhole wet gas compression using multiphase twin screw pump that is described in this paper, is practically achievable through further research and improvements.


1998 ◽  
Vol 13 (01) ◽  
pp. 41-46
Author(s):  
R.B. Leggett ◽  
D.C. Borling ◽  
B.S. Powers ◽  
Khalid Shehata ◽  
Martin Halvorsen ◽  
...  

2016 ◽  
Vol 138 (7) ◽  
Author(s):  
Xu Yang ◽  
Yao Qin ◽  
Zongchang Qu

The working performance of the synchronal rotary multiphase pump (SRMP), alike other types of positive-displacement multiphase pumps, is strongly affected by leakage loss. In this paper, the leakage loss in the SRMP with a full range of inlet gas volume fractions (GVFs) was theoretically and experimentally investigated. The leakage flows in the SRMP were modeled as the one-dimensional gas–liquid flows through narrow gaps. Two types of leakage flow models, homogeneous leakage flow model (HLFM) and separated leakage flow model (SLFM), were developed. The experimental work was conducted to measure the volumetric flow rate of the SRMP using the mixtures of air and N32 oil as working fluids under various inlet GVFs and differential pressures. Comparisons between the simulated and experimental pump flow rates showed that both the accuracies of the HLFM and SLFM related to the inlet GVF. In addition to the differential pressure, the leakage loss of the SRMP was affected by the inlet GVF. The leakage flow rate increased with the inlet GVF due to the changes in physical properties of the gas–liquid leakage flow. Parametric analysis showed that leakage loss in the SRMP can be effectively reduced by reducing the rotor radial clearance without much effect on its mechanical efficiency, whereas the optimum geometric parameters of the rotor and cylinder must be calculated by means of the optimization study with consideration of both the leakage loss and friction loss.


1980 ◽  
Vol 48 (5) ◽  
pp. 911-916 ◽  
Author(s):  
H. Lorino ◽  
A. Harf ◽  
G. Atlan ◽  
Y. Brault ◽  
A. M. Lorino ◽  
...  

Plotting a line to the variables obtained during a panting maneuver, i.e. thoracic volume and mouth pressure, is the conventional way of computing plethysmographic thoracic gas volume (TGV). This procedure is reliable if the magnitude of the thoracic volume changes is large compared to the drift on the signal; this is one of the major problems in volumetric plethysmography. We propose replacing the thoracic volume signal (Vt) by its time derivative (Vt) and similarly mouth pressure (Pm) with its time derivative (Pm). Drift is thus ruled out, and the magnitude of Vt is preserved when the subject fails to carry out noticeable changes in thoracic volume during the panting, since even then the speed of these changes in thoracic volume remains high. The use of Vt and Pm appeared to be necessary when a minicomputer was connected to a pressure-compensated flow plethysmograph to obtain an automatic calculation of TGV. A regression-line technique applied to signals obtained during the panting was used to find the slope of the relation and thus TGV. However, this slope can only be predicted with less than 5% error if the correlation coefficient is very high (i.e., above 0.99). The analysis of 121 recordings from patients showed that the mean r was only 0.954 when Vt and Pm were used. It increased to 0.993 with Vt and Pm. For the same recordings the comparison of hand-calculated TGV and computer-derived TGV showed a much better agreement for the Vt-Pm method (standard error of the estimate (SEE) = 0.14 liter) than for the Vt-Pm method (SEE = 0.34 liter). These results emphasize that, in contrast to the manual technique, the computer does not adequately handle even a small drift of the thoracic signal. The proposed time-derivative method is therefore useful for a hand calculation, but essential to a reliable computer determination of thoracic gas volume.


Author(s):  
Azam Thatte

A novel rotary liquid piston multi-phase pump that transfers pressure energy from high pressure motive fluid stream to a low pressure process fluid stream within a high speed multi-ducted rotor is presented. The multiple ducts in the rotor act like cylinders of a rotating liquid piston pump with the liquid-to-liquid interface between the working fluid and the motive fluid acting like a piston. This novel pump has promise to solve challenges typically seen in multi-phase pumping and in trans-critical and supercritical CO2 compression systems, na m el y, risks due to phase change, two-phase compression inefficiencies, rotordynamic instabilities and sealing challenges etc. In this design the entrance and exit flow angles impart momentum to the rotor and the rotor achieves a self-sustained rotation without external power. The rotational speed dictates the volumetric efficiency, travel distance of the liquid piston within the ducts and the zero-mixing effectiveness of the design. This creates a very efficient pumping/compression system with just one moving part and three stationary parts, which can handle very high pressures and temperatures typical of supercritical CO2 turbomachines and also mitigates some of the rotordynamic stability challenges typically seen in MW-scale sCO2 turbomachinery designs. Ability of the pressure exchanger to dynamically maintain micro-scale gaps between rotor and stators through intelligent pressure balancing features relaxes the need to have complex dynamic seals. In this paper, use of this novel pump for multi-phase CO2 pumping application is explored through an advanced 3D multi-scale multi-phase flow model. The model captures the phase transport, compressibility, advection & diffusion of one phase into the other using a hybrid Eulerian-Lagrangian algorithm. Using these advanced models, performance curves are developed and results for key performance parameters including phase mixing, compressibility losses, effect of inlet gas volume fractions etc. are presented. A detailed transient evolution of two-phase fluid piston interface in the rotor ducts that captures acoustic wave propagation and reflection is presented. This new technology has promise to solve challenges typically seen in multi-phase pumping/ compression, transcritical and supercritical CO2 compression systems or in applications where the traditional pumps face steep challenges like phase change, erosive/ corrosive fluids, particle laden flows with high particle loading or flows with high gas volume fractions. This technology renders itself useful to several applications including supercritical CO2 turbomachines, waste pressure recovery, applications in oil & gas extraction and carbon sequestration etc.


2017 ◽  
Vol 9 (12) ◽  
pp. 168781401773766 ◽  
Author(s):  
Xiaobing Liu ◽  
Quanyou Hu ◽  
Guangtai Shi ◽  
Yongzhong Zeng ◽  
Huiyan Wang

Sign in / Sign up

Export Citation Format

Share Document