Impaired ferritinophagy flux induced by high fat diet mediates hepatic insulin resistance via endoplasmic reticulum stress

2020 ◽  
Vol 140 ◽  
pp. 111329 ◽  
Author(s):  
Chunjie Jiang ◽  
Shanshan Zhang ◽  
Dan Li ◽  
Li Chen ◽  
Ying Zhao ◽  
...  
2014 ◽  
Vol 127 (7) ◽  
pp. 507-518 ◽  
Author(s):  
Vanessa Legry ◽  
Derrick M. Van Rooyen ◽  
Barbara Lambert ◽  
Christine Sempoux ◽  
Laurence Poekes ◽  
...  

Unlike in mice developing simple steatosis, endoplasmic reticulum stress does not contribute to the pathogenesis of insulin resistance and steatohepatitis in high-fat-diet-fed foz/foz mice, which develop progressive liver disease in the metabolic context seen in human non-alcoholic steatohepatitis.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Chunjie Jiang ◽  
Shanshan Zhang ◽  
Hongmei Zeng ◽  
Jingjing Liu ◽  
Dan Li ◽  
...  

AbstractEmerging evidence has been revealed that high fat diet (HFD) correlate with insulin resistance (IR) which could be induced by endoplasmic reticulum stress (ERS). Recently, obesity or HFD induced nonalcoholic fatty liver disease (NAFLD) could promote alteration of iron metabolism. Disorder of iron metabolism have been linked to unnormal metabolism of glucose and lipid. Herein, we investigated the effect of impaired iron homeostasis on hepatic IR, focusing on ferritinophagy. Male C57/6J mice were administered with HFD (60% energy from fat) or LFD (10% energy from fat) for 10 weeks (n = 10), and Palmitic acid (PA)-insulin treated HepG2 cells were also established. Hepatic IR as evidenced by increased hepatic steatosis and decreased of p-AKT (48%, p < 0.0005), p-GSK-3β (34%, p < 0.05) in the liver of HFD mice. In addition, decreased iron level and expression NCOA4, as well as increased up-regulation of IRE1α and EIF2α were observed in HFD liver. By using desferrioxamine (DFO) and ferric ammonium citrate (FAC), we examined iron level on IRE1α and EIF2α. And glucose uptake assay shown that FAC supplementation, and ERS inhibitors of 4-PBA and STF could improve the glucose uptake of HepG2 cells in the presence of PA. Furthermore, we evaluated the glucose uptake of HepG2 cells incubated with adenovirus which mediated overexpression of NCOA4, FAC, 4-PBA (ERS inhibitor) or STF (IRE1 inhibitor). Taken together, deficiency of iron induced by impaired ferritinophagy induced hepatic IR, partly by aggravating hepatic ERS, especially IRE1 signal pathway in vivo and vitro. These findings provide evidence and new insight for therapeutic strategy of iron deficiency in NAFLD.


Metabolism ◽  
2014 ◽  
Vol 63 (5) ◽  
pp. 682-692 ◽  
Author(s):  
Arine M. Melo ◽  
Rafaela O. Benatti ◽  
Leticia M. Ignacio-Souza ◽  
Caroline Okino ◽  
Adriana S. Torsoni ◽  
...  

Diabetes ◽  
2009 ◽  
Vol 58 (4) ◽  
pp. 906-916 ◽  
Author(s):  
A. V. Matveyenko ◽  
T. Gurlo ◽  
M. Daval ◽  
A. E. Butler ◽  
P. C. Butler

2012 ◽  
Vol 302 (6) ◽  
pp. E654-E665 ◽  
Author(s):  
Banumathi K. Cole ◽  
Norine S. Kuhn ◽  
Shamina M. Green-Mitchell ◽  
Kendall A. Leone ◽  
Rebekah M. Raab ◽  
...  

Central obesity is associated with chronic inflammation, insulin resistance, β-cell dysfunction, and endoplasmic reticulum (ER) stress. The 12/15-lipoxygenase enzyme (12/15-LO) promotes inflammation and insulin resistance in adipose and peripheral tissues. Given that obesity is associated with ER stress and 12/15-LO is expressed in adipose tissue, we determined whether 12/15-LO could mediate ER stress signals. Addition of 12/15-LO lipid products 12(S)-HETE and 12(S)-HPETE to differentiated 3T3-L1 adipocytes induced expression and activation of ER stress markers, including BiP, XBP-1, p-PERK, and p-IRE1α. The ER stress inducer, tunicamycin, upregulated ER stress markers in adipocytes with concomitant 12/15-LO activation. Addition of a 12/15-LO inhibitor, CDC, to tunicamycin-treated adipocytes attenuated the ER stress response. Furthermore, 12/15-LO-deficient adipocytes exhibited significantly decreased tunicamycin-induced ER stress. 12/15-LO action involves upregulation of interleukin-12 (IL-12) expression. Tunicamycin significantly upregulated IL-12p40 expression in adipocytes, and IL-12 addition increased ER stress gene expression; conversely, LSF, an IL-12 signaling inhibitor, and an IL-12p40-neutralizing antibody attenuated tunicamycin-induced ER stress. Isolated adipocytes and liver from 12/15-LO-deficient mice fed a high-fat diet revealed a decrease in spliced XBP-1 expression compared with wild-type C57BL/6 mice on a high-fat diet. Furthermore, pancreatic islets from 12/15-LO-deficient mice showed reduced high-fat diet-induced ER stress genes compared with wild-type mice. These data suggest that 12/15-LO activity participates in ER stress in adipocytes, pancreatic islets, and liver. Therefore, reduction of 12/15-LO activity or expression could provide a new therapeutic target to reduce ER stress and downstream inflammation linked to obesity.


Sign in / Sign up

Export Citation Format

Share Document