Construction of a recA mutant of Azospirillum lipoferum and involvement of recA in phase variation*1

2004 ◽  
Vol 236 (2) ◽  
pp. 291-299 ◽  
Author(s):  
L VIAL
2004 ◽  
Vol 236 (2) ◽  
pp. 291-299 ◽  
Author(s):  
Ludovic Vial ◽  
Joël F Pothier ◽  
Philippe Normand ◽  
Yvan Moënne-Loccoz ◽  
René Bally ◽  
...  

2020 ◽  
Vol 21 (9) ◽  
pp. 3259 ◽  
Author(s):  
Gregg S. Pettis ◽  
Aheli S. Mukerji

Vibrio vulnificus populates coastal waters around the world, where it exists freely or becomes concentrated in filter feeding mollusks. It also causes rapid and life-threatening sepsis and wound infections in humans. Of its many virulence factors, it is the V. vulnificus capsule, composed of capsular polysaccharide (CPS), that plays a critical role in evasion of the host innate immune system by conferring antiphagocytic ability and resistance to complement-mediated killing. CPS may also provoke a portion of the host inflammatory cytokine response to this bacterium. CPS production is biochemically and genetically diverse among strains of V. vulnificus, and the carbohydrate diversity of CPS is likely affected by horizontal gene transfer events that result in new combinations of biosynthetic genes. Phase variation between virulent encapsulated opaque colonial variants and attenuated translucent colonial variants, which have little or no CPS, is a common phenotype among strains of this species. One mechanism for generating acapsular variants likely involves homologous recombination between repeat sequences flanking the wzb phosphatase gene within the Group 1 CPS biosynthetic and transport operon. A considerable number of environmental, genetic, and regulatory factors have now been identified that affect CPS gene expression and CPS production in this pathogen.


2021 ◽  
Vol 11 (12) ◽  
pp. 5430
Author(s):  
Paolo Neri ◽  
Alessandro Paoli ◽  
Ciro Santus

Vibration measurements of turbomachinery components are of utmost importance to characterize the dynamic behavior of rotating machines, thus preventing undesired operating conditions. Local techniques such as strain gauges or laser Doppler vibrometers are usually adopted to collect vibration data. However, these approaches provide single-point and generally 1D measurements. The present work proposes an optical technique, which uses two low-speed cameras, a multimedia projector, and three-dimensional digital image correlation (3D-DIC) to provide full-field measurements of a bladed disk undergoing harmonic response analysis (i.e., pure sinusoidal excitation) in the kHz range. The proposed approach exploits a downsampling strategy to overcome the limitations introduced by low-speed cameras. The developed experimental setup was used to measure the response of a bladed disk subjected to an excitation frequency above 6 kHz, providing a deep insight in the deformed shapes, in terms of amplitude and phase distributions, which could not be feasible with single-point sensors. Results demonstrated the system’s effectiveness in measuring amplitudes of few microns, also evidencing blade mistuning effects. A deeper insight into the deformed shape analysis was provided by considering the phase maps on the entire blisk geometry, and phase variation lines were observed on the blades for high excitation frequency.


1996 ◽  
Vol 35 (Part 2, No. 11B) ◽  
pp. L1473-L1475 ◽  
Author(s):  
Kuninori Kitahara ◽  
Katsuyuki Suga ◽  
Akito Hara ◽  
Kazuo Nakajima

2013 ◽  
Vol 52 (22) ◽  
pp. 5460 ◽  
Author(s):  
Analucia V. Fantin ◽  
Daniel P. Willemann ◽  
Matias R. Viotti ◽  
Armando Albertazzi

Sign in / Sign up

Export Citation Format

Share Document