Development of a rapid, sensitive, and reproducible laboratory test kit for the assessment of plasma membrane integrity of human sperm

2008 ◽  
Vol 89 (1) ◽  
pp. 223-227 ◽  
Author(s):  
Man Mohan Misro ◽  
Sankar Prasad Chaki
2013 ◽  
Vol 13 ◽  
pp. 22
Author(s):  
Kamil Gill ◽  
Aleksandra Rosiak ◽  
Anna Kazienko ◽  
Dariusz Gączarzewicz ◽  
Maria Laszczyńska ◽  
...  

2014 ◽  
Author(s):  
Mello Papa Patricia de ◽  
Carlos Ramires Neto ◽  
Priscilla Nascimento Guasti ◽  
Rosiara Rosaria Dias Maziero ◽  
Yame F R Sancler-Silva ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Catarina Dias ◽  
Jesper Nylandsted

AbstractMaintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Dustin A. Ammendolia ◽  
William M. Bement ◽  
John H. Brumell

AbstractPlasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.


1993 ◽  
Vol 21 (3) ◽  
pp. 324-329
Author(s):  
Jeffrey R. Fry ◽  
Alison H. Hammond

A variety of approaches to assessment of cellular integrity exist, based on tests of integrity of the plasma membrane, tests of metabolic competence, and asessment of morphology. By definition, such approaches address different aspects of cellular integrity and hence are not interchangeable indices of cellular integrity. Accordingly, it would be most appropriate to characterise hepatocyte preparations on the basis of more than just trypan blue dye exclusion (a test of plasma membrane integrity) as is customary. A scheme for the choice of the most appropriate mix of tests of cellular integrity is presented.


1984 ◽  
Vol 247 (5) ◽  
pp. C382-C389 ◽  
Author(s):  
W. J. Armitage ◽  
P. Mazur

Human granulocytes are damaged by exposure to concentrations of glycerol as low as 0.5 M. We therefore investigated the addition of glycerol to granulocytes and its subsequent dilution under various conditions to try to distinguish between toxic and harmful osmotic effects of glycerol. The lesion caused by glycerol at 0 degree C was expressed as a loss of plasma membrane integrity (as visualized by fluorescein diacetate) only after incubation (greater than or equal to 1 h) at 37 degrees C. This damage was not ameliorated when osmotic stress was lessened by reducing the rates of addition and dilution of glycerol to keep the computed cell volume within 80-170% of isotonic cell volume. However, when osmotic stress was reduced further by increasing the temperature of addition and dilution of glycerol from 0 degree C to 22 degrees C, the tolerance of the cells to 1 M glycerol increased somewhat. Reducing exposure to glycerol to 3 min or less at 0 degree C greatly increased survival, but this time was too short to allow glycerol to equilibrate intracellularly. Finally, the presence of extra impermeant solute (NaCl or sucrose) in the medium to reduce the equilibrium cell volume to 60% of isotonic cell volume enabled granulocytes to survive 30-min exposure to 1 M glycerol at 0 degree C, but cells had to remain shrunken during the 37 degrees C incubation to prevent the loss of membrane integrity. Suspensions that contained damaged granulocytes formed aggregates when incubated at 37 degrees C, and these aggregates were responsible for a major fraction of the observed loss in viability.


Sign in / Sign up

Export Citation Format

Share Document